坦桑尼亚北部Natron湖盆地冷热水的成因与时代研究

Edista A. Abdallah, C. H. Kasanzu, C. Kinabo, A. Imai, M. Butler
{"title":"坦桑尼亚北部Natron湖盆地冷热水的成因与时代研究","authors":"Edista A. Abdallah, C. H. Kasanzu, C. Kinabo, A. Imai, M. Butler","doi":"10.4314/tjs.v48i4.8","DOIUrl":null,"url":null,"abstract":"Springs on the eastern and western shores of Lake Natron Basin (LNB), located within the eastern branch of the East Africa Rift System (EARS) in Northern Tanzania had a discharge temperature that ranged between 34.0 °C and 51.2 °C, while the pH varied from 8.0 to 10.7. The electrical conductivity (EC) ranged between 5,007 µS/cm and 49,200 µS/cm. Cold waters had a temperature of 31.9 °C to 32.5 °C, while the pH ranged between 8.0 and 8.3, and the EC ranged between 1,401 µS/cm and 3,806 µS/cm. The stable isotope composition varied between -2.4 ‰ and -5.3 ‰ for δ18O, and -15.5 ‰ to -29.3 ‰ for δ2H. The isotopic composition of thermal and cold water of LNB indicates a significant contribution of meteoric water in the recharge of the hydrothermal system. However, thermal water is affected by evaporation, water-rock interaction, carbon dioxide (CO2) exchange and condensation processes. Tritium analysis indicated that the spring water in the LNB hydrothermal system has a residence time of more than 50 years. \nKeywords:    thermal water; Lake Natron Basin; stable isotopes; springs. \n ","PeriodicalId":22207,"journal":{"name":"Tanzania Journal of Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constraining the Origin and Age of the Thermal and Cold Water in the Lake Natron Basin, Northern Tanzania\",\"authors\":\"Edista A. Abdallah, C. H. Kasanzu, C. Kinabo, A. Imai, M. Butler\",\"doi\":\"10.4314/tjs.v48i4.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Springs on the eastern and western shores of Lake Natron Basin (LNB), located within the eastern branch of the East Africa Rift System (EARS) in Northern Tanzania had a discharge temperature that ranged between 34.0 °C and 51.2 °C, while the pH varied from 8.0 to 10.7. The electrical conductivity (EC) ranged between 5,007 µS/cm and 49,200 µS/cm. Cold waters had a temperature of 31.9 °C to 32.5 °C, while the pH ranged between 8.0 and 8.3, and the EC ranged between 1,401 µS/cm and 3,806 µS/cm. The stable isotope composition varied between -2.4 ‰ and -5.3 ‰ for δ18O, and -15.5 ‰ to -29.3 ‰ for δ2H. The isotopic composition of thermal and cold water of LNB indicates a significant contribution of meteoric water in the recharge of the hydrothermal system. However, thermal water is affected by evaporation, water-rock interaction, carbon dioxide (CO2) exchange and condensation processes. Tritium analysis indicated that the spring water in the LNB hydrothermal system has a residence time of more than 50 years. \\nKeywords:    thermal water; Lake Natron Basin; stable isotopes; springs. \\n \",\"PeriodicalId\":22207,\"journal\":{\"name\":\"Tanzania Journal of Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tanzania Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/tjs.v48i4.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tanzania Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/tjs.v48i4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

位于坦桑尼亚北部东非裂谷系(EARS)东部分支内的Natron湖盆地(LNB)东岸和西岸的泉水,出水温度在34.0 ~ 51.2℃之间,pH值在8.0 ~ 10.7之间。电导率(EC)范围为5007µS/cm ~ 49200µS/cm。冷水的温度为31.9°C至32.5°C, pH值为8.0至8.3,EC值为1,401µS/cm至3,806µS/cm。δ18O稳定同位素组成变化范围为-2.4‰~ -5.3‰,δ2H稳定同位素组成变化范围为-15.5‰~ -29.3‰。LNB冷热水的同位素组成表明,大气水对热液系统的补给有重要贡献。然而,热水受到蒸发、水岩相互作用、二氧化碳交换和冷凝过程的影响。氚分析表明,LNB热液系统中泉水的停留时间超过50年。关键词:热水;纳特龙湖盆地;稳定同位素;弹簧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraining the Origin and Age of the Thermal and Cold Water in the Lake Natron Basin, Northern Tanzania
Springs on the eastern and western shores of Lake Natron Basin (LNB), located within the eastern branch of the East Africa Rift System (EARS) in Northern Tanzania had a discharge temperature that ranged between 34.0 °C and 51.2 °C, while the pH varied from 8.0 to 10.7. The electrical conductivity (EC) ranged between 5,007 µS/cm and 49,200 µS/cm. Cold waters had a temperature of 31.9 °C to 32.5 °C, while the pH ranged between 8.0 and 8.3, and the EC ranged between 1,401 µS/cm and 3,806 µS/cm. The stable isotope composition varied between -2.4 ‰ and -5.3 ‰ for δ18O, and -15.5 ‰ to -29.3 ‰ for δ2H. The isotopic composition of thermal and cold water of LNB indicates a significant contribution of meteoric water in the recharge of the hydrothermal system. However, thermal water is affected by evaporation, water-rock interaction, carbon dioxide (CO2) exchange and condensation processes. Tritium analysis indicated that the spring water in the LNB hydrothermal system has a residence time of more than 50 years. Keywords:    thermal water; Lake Natron Basin; stable isotopes; springs.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信