{"title":"用SEIR模型对两株Covid-19疾病进行数学分析","authors":"A. S. Eegunjobi, O. Makinde","doi":"10.5614/j.math.fund.sci.2022.54.2.1","DOIUrl":null,"url":null,"abstract":"The biggest public health problem facing the whole world today is the COVID-19 pandemic. From the time COVID-19 came into the limelight, people have been losing their loved ones and relatives as a direct result of this disease. Here, we present a six-compartment epidemiological model that is deterministic in nature for the emergence and spread of two strains of the COVID-19 disease in a given community, with quarantine and recovery due to treatment. Employing the stability theory of differential equations, the model was qualitatively analyzed. We derived the basic reproduction number for both strains and investigated the sensitivity index of the parameters. In addition to this, we probed the global stability of the disease-free equilibrium. The disease-free equilibrium was revealed to be globally stable, provided and the model exhibited forward bifurcation. A numerical simulation was performed, and pertinent results are displayed graphically and discussed.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical Analysis of Two Strains Covid-19 Disease Using SEIR Model\",\"authors\":\"A. S. Eegunjobi, O. Makinde\",\"doi\":\"10.5614/j.math.fund.sci.2022.54.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biggest public health problem facing the whole world today is the COVID-19 pandemic. From the time COVID-19 came into the limelight, people have been losing their loved ones and relatives as a direct result of this disease. Here, we present a six-compartment epidemiological model that is deterministic in nature for the emergence and spread of two strains of the COVID-19 disease in a given community, with quarantine and recovery due to treatment. Employing the stability theory of differential equations, the model was qualitatively analyzed. We derived the basic reproduction number for both strains and investigated the sensitivity index of the parameters. In addition to this, we probed the global stability of the disease-free equilibrium. The disease-free equilibrium was revealed to be globally stable, provided and the model exhibited forward bifurcation. A numerical simulation was performed, and pertinent results are displayed graphically and discussed.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.math.fund.sci.2022.54.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2022.54.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mathematical Analysis of Two Strains Covid-19 Disease Using SEIR Model
The biggest public health problem facing the whole world today is the COVID-19 pandemic. From the time COVID-19 came into the limelight, people have been losing their loved ones and relatives as a direct result of this disease. Here, we present a six-compartment epidemiological model that is deterministic in nature for the emergence and spread of two strains of the COVID-19 disease in a given community, with quarantine and recovery due to treatment. Employing the stability theory of differential equations, the model was qualitatively analyzed. We derived the basic reproduction number for both strains and investigated the sensitivity index of the parameters. In addition to this, we probed the global stability of the disease-free equilibrium. The disease-free equilibrium was revealed to be globally stable, provided and the model exhibited forward bifurcation. A numerical simulation was performed, and pertinent results are displayed graphically and discussed.
期刊介绍:
Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.