基于人工蜂群进化算法的低差调节器设计

Jitendra B. Chinchore, R. Thakker
{"title":"基于人工蜂群进化算法的低差调节器设计","authors":"Jitendra B. Chinchore, R. Thakker","doi":"10.1109/ICCPCT.2015.7159280","DOIUrl":null,"url":null,"abstract":"In this paper, a low voltage low dropout (LDO) regulator is designed and simulated in 0.13 μm CMOS technology, which converts an input voltage of 1.2V into a stable regulated output voltage of 1.1 V using Ng-Spice circuit simulator. The two stage operational amplifier (Op-Amp) is used as an error amplifier (EA). Here, the Artificial Bee Colony (ABC) evolutionary algorithm based optimizer is demonstrated for solving the problem of the device sizing and other parameters of Op-Amp and optimization. This approach for designing two stage Op-Amp circuit does not require any analytical calculations and handles non-linear effects of sub-micron devices very effectively. The designed LDO is tested for a change in load current for 0-100 mA and it is found that the power supply rejection ratio (PSRR) is found to be 78.5 dB at 1 KHz and 28.7 dB at 10 MHz. The settling time of less than 1 μsec observed during testing of line and load regulations.","PeriodicalId":6650,"journal":{"name":"2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]","volume":"124 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of low dropout regulator using artificial bee colony evolutionary algorithm\",\"authors\":\"Jitendra B. Chinchore, R. Thakker\",\"doi\":\"10.1109/ICCPCT.2015.7159280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low voltage low dropout (LDO) regulator is designed and simulated in 0.13 μm CMOS technology, which converts an input voltage of 1.2V into a stable regulated output voltage of 1.1 V using Ng-Spice circuit simulator. The two stage operational amplifier (Op-Amp) is used as an error amplifier (EA). Here, the Artificial Bee Colony (ABC) evolutionary algorithm based optimizer is demonstrated for solving the problem of the device sizing and other parameters of Op-Amp and optimization. This approach for designing two stage Op-Amp circuit does not require any analytical calculations and handles non-linear effects of sub-micron devices very effectively. The designed LDO is tested for a change in load current for 0-100 mA and it is found that the power supply rejection ratio (PSRR) is found to be 78.5 dB at 1 KHz and 28.7 dB at 10 MHz. The settling time of less than 1 μsec observed during testing of line and load regulations.\",\"PeriodicalId\":6650,\"journal\":{\"name\":\"2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]\",\"volume\":\"124 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPCT.2015.7159280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2015.7159280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文采用0.13 μm CMOS技术设计并仿真了一种LDO稳压器,利用Ng-Spice电路模拟器将1.2V的输入电压转换为1.1 V的稳定稳压输出电压。两级运算放大器(运放)用作误差放大器(EA)。本文介绍了基于人工蜂群(Artificial Bee Colony, ABC)进化算法的优化器,用于解决运放器件尺寸和其他参数的优化问题。这种设计两级运算放大器电路的方法不需要任何分析计算,并且非常有效地处理亚微米器件的非线性效应。对设计的LDO进行了0-100 mA负载电流变化测试,发现电源抑制比(PSRR)在1 KHz时为78.5 dB,在10 MHz时为28.7 dB。在线路和负载规则测试中,观察到沉降时间小于1 μsec。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of low dropout regulator using artificial bee colony evolutionary algorithm
In this paper, a low voltage low dropout (LDO) regulator is designed and simulated in 0.13 μm CMOS technology, which converts an input voltage of 1.2V into a stable regulated output voltage of 1.1 V using Ng-Spice circuit simulator. The two stage operational amplifier (Op-Amp) is used as an error amplifier (EA). Here, the Artificial Bee Colony (ABC) evolutionary algorithm based optimizer is demonstrated for solving the problem of the device sizing and other parameters of Op-Amp and optimization. This approach for designing two stage Op-Amp circuit does not require any analytical calculations and handles non-linear effects of sub-micron devices very effectively. The designed LDO is tested for a change in load current for 0-100 mA and it is found that the power supply rejection ratio (PSRR) is found to be 78.5 dB at 1 KHz and 28.7 dB at 10 MHz. The settling time of less than 1 μsec observed during testing of line and load regulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信