{"title":"有限群环积中的幂","authors":"Rijubrata Kundu, Sudipa Mondal","doi":"10.1515/jgth-2021-0057","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we compute powers in the wreath product G ≀ S n G\\wr S_{n} for any finite group 𝐺. For r ≥ 2 r\\geq 2 a prime, consider ω r : G ≀ S n → G ≀ S n \\omega_{r}\\colon G\\wr S_{n}\\to G\\wr S_{n} defined by g ↦ g r g\\mapsto g^{r} . Let P r ( G ≀ S n ) := | ω r ( G ≀ S n ) | | G | n n ! P_{r}(G\\wr S_{n}):=\\frac{\\lvert\\omega_{r}(G\\wr S_{n})\\rvert}{\\lvert G\\rvert^{n}n!} be the probability that a randomly chosen element in G ≀ S n G\\wr S_{n} is an 𝑟-th power. We prove P r ( G ≀ S n + 1 ) = P r ( G ≀ S n ) P_{r}(G\\wr S_{n+1})=P_{r}(G\\wr S_{n}) for all n ≢ - 1 ( mod r ) n\\not\\equiv-1\\ (\\mathrm{mod}\\ r) if the order of 𝐺 is coprime to 𝑟. We also give a formula for the number of conjugacy classes that are 𝑟-th powers in G ≀ S n G\\wr S_{n} .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Powers in wreath products of finite groups\",\"authors\":\"Rijubrata Kundu, Sudipa Mondal\",\"doi\":\"10.1515/jgth-2021-0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we compute powers in the wreath product G ≀ S n G\\\\wr S_{n} for any finite group 𝐺. For r ≥ 2 r\\\\geq 2 a prime, consider ω r : G ≀ S n → G ≀ S n \\\\omega_{r}\\\\colon G\\\\wr S_{n}\\\\to G\\\\wr S_{n} defined by g ↦ g r g\\\\mapsto g^{r} . Let P r ( G ≀ S n ) := | ω r ( G ≀ S n ) | | G | n n ! P_{r}(G\\\\wr S_{n}):=\\\\frac{\\\\lvert\\\\omega_{r}(G\\\\wr S_{n})\\\\rvert}{\\\\lvert G\\\\rvert^{n}n!} be the probability that a randomly chosen element in G ≀ S n G\\\\wr S_{n} is an 𝑟-th power. We prove P r ( G ≀ S n + 1 ) = P r ( G ≀ S n ) P_{r}(G\\\\wr S_{n+1})=P_{r}(G\\\\wr S_{n}) for all n ≢ - 1 ( mod r ) n\\\\not\\\\equiv-1\\\\ (\\\\mathrm{mod}\\\\ r) if the order of 𝐺 is coprime to 𝑟. We also give a formula for the number of conjugacy classes that are 𝑟-th powers in G ≀ S n G\\\\wr S_{n} .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2021-0057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
抽象的这篇文章,我们《wreath鲍尔compute广告G≀S n G \ wr S_{}对于任何有限的𝐺集团。为r≥2 r \ geq a prime,认为ωr: G≀S n→G≀结肠G \ n \ omega_ {r的wr S_ {n}到G \ wr S_ (n):是由G↦G r G r \ mapsto G ^{}。让P r S(G≀n): = |ωS r(G≀n) | | G | nn !P_ {r} (G \ n wr S_ {}): = frac {lvert \ r omega_ {} (G wr S_ {n}) \ rvert} {lvert G \ rvert ^ {n, n !be a probability那randomly被选中元素》是G≀S n G \ wr S_{}是一个𝑟-th电源。我们证明P r S(G≀n + 1) = P r S(G≀n) P_ {r} (G \ wr S_ (n + 1)) = r P_ {} (G \ wr S_ {n})为所有n≢- 1(modr) n \ \ equiv-1音符(mathrm {mod} \ r)如果《𝐺是coprime到𝑟勋章。我们当家》也给a配方for conjugacy课堂这是鲍尔𝑟-th in G≀S n G \ wr S_{}。
Abstract In this paper, we compute powers in the wreath product G ≀ S n G\wr S_{n} for any finite group 𝐺. For r ≥ 2 r\geq 2 a prime, consider ω r : G ≀ S n → G ≀ S n \omega_{r}\colon G\wr S_{n}\to G\wr S_{n} defined by g ↦ g r g\mapsto g^{r} . Let P r ( G ≀ S n ) := | ω r ( G ≀ S n ) | | G | n n ! P_{r}(G\wr S_{n}):=\frac{\lvert\omega_{r}(G\wr S_{n})\rvert}{\lvert G\rvert^{n}n!} be the probability that a randomly chosen element in G ≀ S n G\wr S_{n} is an 𝑟-th power. We prove P r ( G ≀ S n + 1 ) = P r ( G ≀ S n ) P_{r}(G\wr S_{n+1})=P_{r}(G\wr S_{n}) for all n ≢ - 1 ( mod r ) n\not\equiv-1\ (\mathrm{mod}\ r) if the order of 𝐺 is coprime to 𝑟. We also give a formula for the number of conjugacy classes that are 𝑟-th powers in G ≀ S n G\wr S_{n} .