基于混合非线性优化算法的神经偶极子定位

Sheng Ye, Jie Hu
{"title":"基于混合非线性优化算法的神经偶极子定位","authors":"Sheng Ye, Jie Hu","doi":"10.1109/ICMLC.2002.1167459","DOIUrl":null,"url":null,"abstract":"In the MEG inverse problem, the source localization procedure is to obtain dipole parameter solution that produces a calculated field pattern best matching the measured data. Here, a hybrid algorithm is described, i.e., Levenberg-Marquardt (LM) method for a fine scanning near the source area, and quasi-Newton (QN) method for a high-speed coarse scanning over a large area of the head. By a set of simulations, this presented algorithm can be more efficient both in computation time and sensitivity to the iterative initial value.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"43 6 1","pages":"1505-1506 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural dipole localization by a hybrid nonlinear optimization algorithm\",\"authors\":\"Sheng Ye, Jie Hu\",\"doi\":\"10.1109/ICMLC.2002.1167459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the MEG inverse problem, the source localization procedure is to obtain dipole parameter solution that produces a calculated field pattern best matching the measured data. Here, a hybrid algorithm is described, i.e., Levenberg-Marquardt (LM) method for a fine scanning near the source area, and quasi-Newton (QN) method for a high-speed coarse scanning over a large area of the head. By a set of simulations, this presented algorithm can be more efficient both in computation time and sensitivity to the iterative initial value.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"43 6 1\",\"pages\":\"1505-1506 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1167459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1167459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在磁相图反演问题中,源定位过程是获取偶极子参数解,使其产生与实测数据最匹配的计算场图。本文描述了一种混合算法,即在源区域附近进行精细扫描的Levenberg-Marquardt (LM)方法和在头部大面积范围内进行高速粗扫描的准牛顿(QN)方法。通过一组仿真,该算法在计算时间和对迭代初值的灵敏度上都具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural dipole localization by a hybrid nonlinear optimization algorithm
In the MEG inverse problem, the source localization procedure is to obtain dipole parameter solution that produces a calculated field pattern best matching the measured data. Here, a hybrid algorithm is described, i.e., Levenberg-Marquardt (LM) method for a fine scanning near the source area, and quasi-Newton (QN) method for a high-speed coarse scanning over a large area of the head. By a set of simulations, this presented algorithm can be more efficient both in computation time and sensitivity to the iterative initial value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信