Lam B. Q. Nguyen, I. Zelinka, V. Snás̃el, Loan T. T. Nguyen, Bay Vo
{"title":"大图中的子图挖掘:综述","authors":"Lam B. Q. Nguyen, I. Zelinka, V. Snás̃el, Loan T. T. Nguyen, Bay Vo","doi":"10.1002/widm.1454","DOIUrl":null,"url":null,"abstract":"Large graphs are often used to simulate and model complex systems in various research and application fields. Because of its importance, frequent subgraph mining (FSM) in single large graphs is a vital issue, and recently, it has attracted numerous researchers, and played an important role in various tasks for both research and application purposes. FSM is aimed at finding all subgraphs whose number of appearances in a large graph is greater than or equal to a given frequency threshold. In most recent applications, the underlying graphs are very large, such as social networks, and therefore algorithms for FSM from a single large graph have been rapidly developed, but all of them have NP‐hard (nondeterministic polynomial time) complexity with huge search spaces, and therefore still need a lot of time and memory to restore and process. In this article, we present an overview of problems of FSM, important phases in FSM, main groups of FSM, as well as surveying many modern applied algorithms. This includes many practical applications and is a fundamental premise for many studies in the future.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"104 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Subgraph mining in a large graph: A review\",\"authors\":\"Lam B. Q. Nguyen, I. Zelinka, V. Snás̃el, Loan T. T. Nguyen, Bay Vo\",\"doi\":\"10.1002/widm.1454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large graphs are often used to simulate and model complex systems in various research and application fields. Because of its importance, frequent subgraph mining (FSM) in single large graphs is a vital issue, and recently, it has attracted numerous researchers, and played an important role in various tasks for both research and application purposes. FSM is aimed at finding all subgraphs whose number of appearances in a large graph is greater than or equal to a given frequency threshold. In most recent applications, the underlying graphs are very large, such as social networks, and therefore algorithms for FSM from a single large graph have been rapidly developed, but all of them have NP‐hard (nondeterministic polynomial time) complexity with huge search spaces, and therefore still need a lot of time and memory to restore and process. In this article, we present an overview of problems of FSM, important phases in FSM, main groups of FSM, as well as surveying many modern applied algorithms. This includes many practical applications and is a fundamental premise for many studies in the future.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1454\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1454","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Large graphs are often used to simulate and model complex systems in various research and application fields. Because of its importance, frequent subgraph mining (FSM) in single large graphs is a vital issue, and recently, it has attracted numerous researchers, and played an important role in various tasks for both research and application purposes. FSM is aimed at finding all subgraphs whose number of appearances in a large graph is greater than or equal to a given frequency threshold. In most recent applications, the underlying graphs are very large, such as social networks, and therefore algorithms for FSM from a single large graph have been rapidly developed, but all of them have NP‐hard (nondeterministic polynomial time) complexity with huge search spaces, and therefore still need a lot of time and memory to restore and process. In this article, we present an overview of problems of FSM, important phases in FSM, main groups of FSM, as well as surveying many modern applied algorithms. This includes many practical applications and is a fundamental premise for many studies in the future.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.