{"title":"高纵横比氮化硅纳米膜的杨氏模量","authors":"Ping-Hei Chen, Cheng-Hao Yang, Chien-Ying Tsai, Tien-Li Chang, W. Hsu, Tai-Chou Chen","doi":"10.1109/NANO.2007.4601367","DOIUrl":null,"url":null,"abstract":"The physical properties of nano-thickness membrane are known to be different from those of bulk material. However, it requires a novel approach to measure the physical properties of nano-thickness membrane due to its nano-scale dimension. Currently, many potential applications for the nanoscale structures are not really practical because their mechanical properties have not been established. In this study, a suspended high aspect ratio silicon nitride nano-thickness membrane is fabricated by using silicon micro-machining. The membrane has a thickness of 30 nm and an area of 4 mm by 7 mm, as shown in Fig.1. Young's modulus of the silicon nitride nano-thickness membrane is determined from the deflection of the suspended membrane, which is resulted from the weight of membrane itself.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"93 1","pages":"1341-1344"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Young's Modulus of High Aspect Ratio Si3N4 Nano-thickness Membrane\",\"authors\":\"Ping-Hei Chen, Cheng-Hao Yang, Chien-Ying Tsai, Tien-Li Chang, W. Hsu, Tai-Chou Chen\",\"doi\":\"10.1109/NANO.2007.4601367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physical properties of nano-thickness membrane are known to be different from those of bulk material. However, it requires a novel approach to measure the physical properties of nano-thickness membrane due to its nano-scale dimension. Currently, many potential applications for the nanoscale structures are not really practical because their mechanical properties have not been established. In this study, a suspended high aspect ratio silicon nitride nano-thickness membrane is fabricated by using silicon micro-machining. The membrane has a thickness of 30 nm and an area of 4 mm by 7 mm, as shown in Fig.1. Young's modulus of the silicon nitride nano-thickness membrane is determined from the deflection of the suspended membrane, which is resulted from the weight of membrane itself.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"93 1\",\"pages\":\"1341-1344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Young's Modulus of High Aspect Ratio Si3N4 Nano-thickness Membrane
The physical properties of nano-thickness membrane are known to be different from those of bulk material. However, it requires a novel approach to measure the physical properties of nano-thickness membrane due to its nano-scale dimension. Currently, many potential applications for the nanoscale structures are not really practical because their mechanical properties have not been established. In this study, a suspended high aspect ratio silicon nitride nano-thickness membrane is fabricated by using silicon micro-machining. The membrane has a thickness of 30 nm and an area of 4 mm by 7 mm, as shown in Fig.1. Young's modulus of the silicon nitride nano-thickness membrane is determined from the deflection of the suspended membrane, which is resulted from the weight of membrane itself.