两全其美:结合cnn和几何约束进行分层运动分割

Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, E. Learned-Miller
{"title":"两全其美:结合cnn和几何约束进行分层运动分割","authors":"Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, E. Learned-Miller","doi":"10.1109/CVPR.2018.00060","DOIUrl":null,"url":null,"abstract":"Traditional methods of motion segmentation use powerful geometric constraints to understand motion, but fail to leverage the semantics of high-level image understanding. Modern CNN methods of motion analysis, on the other hand, excel at identifying well-known structures, but may not precisely characterize well-known geometric constraints. In this work, we build a new statistical model of rigid motion flow based on classical perspective projection constraints. We then combine piecewise rigid motions into complex deformable and articulated objects, guided by semantic segmentation from CNNs and a second \"object-level\" statistical model. This combination of classical geometric knowledge combined with the pattern recognition abilities of CNNs yields excellent performance on a wide range of motion segmentation benchmarks, from complex geometric scenes to camouflaged animals.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"508-517"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation\",\"authors\":\"Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, E. Learned-Miller\",\"doi\":\"10.1109/CVPR.2018.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional methods of motion segmentation use powerful geometric constraints to understand motion, but fail to leverage the semantics of high-level image understanding. Modern CNN methods of motion analysis, on the other hand, excel at identifying well-known structures, but may not precisely characterize well-known geometric constraints. In this work, we build a new statistical model of rigid motion flow based on classical perspective projection constraints. We then combine piecewise rigid motions into complex deformable and articulated objects, guided by semantic segmentation from CNNs and a second \\\"object-level\\\" statistical model. This combination of classical geometric knowledge combined with the pattern recognition abilities of CNNs yields excellent performance on a wide range of motion segmentation benchmarks, from complex geometric scenes to camouflaged animals.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"508-517\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

传统的运动分割方法使用强大的几何约束来理解运动,但未能利用高级图像理解的语义。另一方面,现代CNN运动分析方法擅长识别已知的结构,但可能无法精确表征已知的几何约束。在这项工作中,我们建立了一个新的基于经典透视投影约束的刚性运动流统计模型。然后,通过cnn的语义分割和第二个“对象级”统计模型,我们将分段的刚性运动组合成复杂的可变形和铰接的对象。将经典几何知识与cnn的模式识别能力相结合,在从复杂几何场景到伪装动物的各种运动分割基准上产生了出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation
Traditional methods of motion segmentation use powerful geometric constraints to understand motion, but fail to leverage the semantics of high-level image understanding. Modern CNN methods of motion analysis, on the other hand, excel at identifying well-known structures, but may not precisely characterize well-known geometric constraints. In this work, we build a new statistical model of rigid motion flow based on classical perspective projection constraints. We then combine piecewise rigid motions into complex deformable and articulated objects, guided by semantic segmentation from CNNs and a second "object-level" statistical model. This combination of classical geometric knowledge combined with the pattern recognition abilities of CNNs yields excellent performance on a wide range of motion segmentation benchmarks, from complex geometric scenes to camouflaged animals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信