全射影阿贝尔的交换子自同态𝑝-groups

Pub Date : 2023-06-23 DOI:10.1515/jgth-2022-0197
P. Keef
{"title":"全射影阿贝尔的交换子自同态𝑝-groups","authors":"P. Keef","doi":"10.1515/jgth-2022-0197","DOIUrl":null,"url":null,"abstract":"Abstract For a primary abelian group 𝐺, Chekhlov and Danchev (2015) defined three variations of Kaplansky’s notion of full transitivity by restricting one’s attention to the subgroup, the subring and the unitary subring of the endomorphism ring of 𝐺 generated by the collection of all commutator endomorphisms. They posed the problem of describing exactly which totally projective groups exhibit these forms of full transitivity. This problem, and some closely related questions, are completely answered using the Ulm function of 𝐺.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutator endomorphisms of totally projective abelian 𝑝-groups\",\"authors\":\"P. Keef\",\"doi\":\"10.1515/jgth-2022-0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a primary abelian group 𝐺, Chekhlov and Danchev (2015) defined three variations of Kaplansky’s notion of full transitivity by restricting one’s attention to the subgroup, the subring and the unitary subring of the endomorphism ring of 𝐺 generated by the collection of all commutator endomorphisms. They posed the problem of describing exactly which totally projective groups exhibit these forms of full transitivity. This problem, and some closely related questions, are completely answered using the Ulm function of 𝐺.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个初等阿别群𝐺,Chekhlov和Danchev(2015)通过将人们的注意力限制在所有对易子自同态集合生成的𝐺自同态环的子群、子带和酉子带上,定义了Kaplansky的完全可及性概念的三个变体。他们提出了一个问题,即准确地描述哪些全射影群表现出这些形式的完全及物性。这个问题,以及一些密切相关的问题,都可以通过𝐺的Ulm函数得到完全的解答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Commutator endomorphisms of totally projective abelian 𝑝-groups
Abstract For a primary abelian group 𝐺, Chekhlov and Danchev (2015) defined three variations of Kaplansky’s notion of full transitivity by restricting one’s attention to the subgroup, the subring and the unitary subring of the endomorphism ring of 𝐺 generated by the collection of all commutator endomorphisms. They posed the problem of describing exactly which totally projective groups exhibit these forms of full transitivity. This problem, and some closely related questions, are completely answered using the Ulm function of 𝐺.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信