具有广义漂移和非光滑色散函数的随机积分方程的路径可解性

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
I. Karatzas, J. Ruf
{"title":"具有广义漂移和非光滑色散函数的随机积分方程的路径可解性","authors":"I. Karatzas, J. Ruf","doi":"10.1214/14-AIHP660","DOIUrl":null,"url":null,"abstract":"We study one-dimensional stochastic integral equations with non-smooth dispersion coefficients, and with drift components that are not restricted to be absolutely continuous with respect to Lebesgue measure. In the spirit of Lamperti, Doss and Sussmann, we relate solutions of such equations to solutions of certain ordinary integral equations, indexed by a generic element of the underlying probability space. This relation allows us to solve the stochastic integral equations in a pathwise sense.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"113 1","pages":"915-938"},"PeriodicalIF":1.2000,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"PATHWISE SOLVABILITY OF STOCHASTIC INTEGRAL EQUATIONS WITH GENERALIZED DRIFT AND NON-SMOOTH DISPERSION FUNCTIONS\",\"authors\":\"I. Karatzas, J. Ruf\",\"doi\":\"10.1214/14-AIHP660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study one-dimensional stochastic integral equations with non-smooth dispersion coefficients, and with drift components that are not restricted to be absolutely continuous with respect to Lebesgue measure. In the spirit of Lamperti, Doss and Sussmann, we relate solutions of such equations to solutions of certain ordinary integral equations, indexed by a generic element of the underlying probability space. This relation allows us to solve the stochastic integral equations in a pathwise sense.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"113 1\",\"pages\":\"915-938\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/14-AIHP660\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AIHP660","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了具有非光滑色散系数和漂移分量的一维随机积分方程,这些漂移分量不受勒贝格测度的绝对连续限制。本着Lamperti, Doss和Sussmann的精神,我们将这些方程的解与某些普通积分方程的解联系起来,这些方程的解由底层概率空间的一般元素表示。这种关系使我们能够在路径意义上求解随机积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PATHWISE SOLVABILITY OF STOCHASTIC INTEGRAL EQUATIONS WITH GENERALIZED DRIFT AND NON-SMOOTH DISPERSION FUNCTIONS
We study one-dimensional stochastic integral equations with non-smooth dispersion coefficients, and with drift components that are not restricted to be absolutely continuous with respect to Lebesgue measure. In the spirit of Lamperti, Doss and Sussmann, we relate solutions of such equations to solutions of certain ordinary integral equations, indexed by a generic element of the underlying probability space. This relation allows us to solve the stochastic integral equations in a pathwise sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信