蔡氏电路闭合链中产生超混沌三维涡旋吸引子的新方法

D. Cafagna, G. Grassi
{"title":"蔡氏电路闭合链中产生超混沌三维涡旋吸引子的新方法","authors":"D. Cafagna, G. Grassi","doi":"10.1109/ISCAS.2003.1204955","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to generate new hyperchaotic attractors in a closed chain of Chua's circuits. By taking a ring of three circuits and by exploiting sine functions as non-linearities, the proposed technique enables 3D-scroll attractors to be generated. In particular, the paper shows that 3D-scroll dynamics can be easily designed by modifying six parameters related to the circuit nonlinearities.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"4 1","pages":"60-63"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new approach to generate hyperchaotic 3D-scroll attractors in a closed chain of Chua's circuits\",\"authors\":\"D. Cafagna, G. Grassi\",\"doi\":\"10.1109/ISCAS.2003.1204955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to generate new hyperchaotic attractors in a closed chain of Chua's circuits. By taking a ring of three circuits and by exploiting sine functions as non-linearities, the proposed technique enables 3D-scroll attractors to be generated. In particular, the paper shows that 3D-scroll dynamics can be easily designed by modifying six parameters related to the circuit nonlinearities.\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"4 1\",\"pages\":\"60-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2003.1204955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2003.1204955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种在蔡氏电路闭合链中产生新的超混沌吸引子的方法。通过采用由三个电路组成的环,并利用正弦函数作为非线性,所提出的技术可以生成3d涡旋吸引子。特别是,通过修改与电路非线性相关的六个参数,可以很容易地设计三维涡旋动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to generate hyperchaotic 3D-scroll attractors in a closed chain of Chua's circuits
This paper presents an approach to generate new hyperchaotic attractors in a closed chain of Chua's circuits. By taking a ring of three circuits and by exploiting sine functions as non-linearities, the proposed technique enables 3D-scroll attractors to be generated. In particular, the paper shows that 3D-scroll dynamics can be easily designed by modifying six parameters related to the circuit nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信