镓植入对先进CMOS光晕/口袋优化的影响

Y. Chin, C. Y. Yang, T. H. Lee, S. Yeh, W. Chang, S. Huang, N. H. Yang, C. Chien, J. F. Lin, G. Li, J. Y. Wu, B. Guo, B. Colombeau, T. Thanigaivelan, N. Pradhan, T. Wu, M. Hou, S. Chen, C. Chung, T. Toh, D. Kouzminov, D. Barrett, K. Shim
{"title":"镓植入对先进CMOS光晕/口袋优化的影响","authors":"Y. Chin, C. Y. Yang, T. H. Lee, S. Yeh, W. Chang, S. Huang, N. H. Yang, C. Chien, J. F. Lin, G. Li, J. Y. Wu, B. Guo, B. Colombeau, T. Thanigaivelan, N. Pradhan, T. Wu, M. Hou, S. Chen, C. Chung, T. Toh, D. Kouzminov, D. Barrett, K. Shim","doi":"10.1109/IIT.2014.6939771","DOIUrl":null,"url":null,"abstract":"Optimization of halo profile for advanced MOSFET device is important to control device short channel effect as well as device leakage. Multiple halo implants, such as mixture of Indium and boron to tailor the halo formation, have been used widely for n-FET devices. Amid its AMU and solubility, Gallium has a potential for better halo activation than Indium and reduced lateral straggling than boron. Therefore, Gallium could be a promising specie for device improvement through 1) halo optimization in planar devices, or 2) ground plane for retrograde well for better FinFET leakage characteristics. In this paper, Gallium is used to replace high scattering P dopant (HS-P) halo for SRAM or HS-P cluster halo for core NFET using a poly-SiON 28nm process with bare wafers and device splits. Secondary Ion Mass Spectroscopy (SIMS) was employed for dopant profiles for as-implanted and after thermal process. It is shown that when replacing HS-P or HS-P cluster halo by Gallium an excessive device shift is observed. The overlap capacitance indicates that overlap lateral diffusion regions are significant different with Gallium halo than established process flow. The paper will discuss potential underlying physical mechanisms.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"73 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of gallium implant for advanced CMOS halo/pocket optimization\",\"authors\":\"Y. Chin, C. Y. Yang, T. H. Lee, S. Yeh, W. Chang, S. Huang, N. H. Yang, C. Chien, J. F. Lin, G. Li, J. Y. Wu, B. Guo, B. Colombeau, T. Thanigaivelan, N. Pradhan, T. Wu, M. Hou, S. Chen, C. Chung, T. Toh, D. Kouzminov, D. Barrett, K. Shim\",\"doi\":\"10.1109/IIT.2014.6939771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of halo profile for advanced MOSFET device is important to control device short channel effect as well as device leakage. Multiple halo implants, such as mixture of Indium and boron to tailor the halo formation, have been used widely for n-FET devices. Amid its AMU and solubility, Gallium has a potential for better halo activation than Indium and reduced lateral straggling than boron. Therefore, Gallium could be a promising specie for device improvement through 1) halo optimization in planar devices, or 2) ground plane for retrograde well for better FinFET leakage characteristics. In this paper, Gallium is used to replace high scattering P dopant (HS-P) halo for SRAM or HS-P cluster halo for core NFET using a poly-SiON 28nm process with bare wafers and device splits. Secondary Ion Mass Spectroscopy (SIMS) was employed for dopant profiles for as-implanted and after thermal process. It is shown that when replacing HS-P or HS-P cluster halo by Gallium an excessive device shift is observed. The overlap capacitance indicates that overlap lateral diffusion regions are significant different with Gallium halo than established process flow. The paper will discuss potential underlying physical mechanisms.\",\"PeriodicalId\":6548,\"journal\":{\"name\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"volume\":\"73 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIT.2014.6939771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

优化先进MOSFET器件的光晕分布对于控制器件短沟道效应和器件泄漏具有重要意义。多种晕植入物,如铟和硼的混合物,以定制晕的形成,已广泛用于n-FET器件。在其AMU和溶解度中,镓比铟具有更好的晕活化潜力,比硼具有更少的横向分散。因此,镓可能是一种很有前途的材料,可以通过1)平面器件的光晕优化或2)逆行井的接平面来改进器件,以获得更好的FinFET泄漏特性。在本文中,使用镓取代高散射P掺杂(HS-P)晕用于SRAM或HS-P簇晕用于核心NFET,采用裸晶圆和器件分裂的多晶硅28nm工艺。采用二次离子质谱(SIMS)分析了注入前后的掺杂谱。结果表明,当用镓代替HS-P或HS-P团晕时,器件位移过大。重叠电容表明,镓晕的重叠横向扩散区域与既定工艺流程有显著差异。本文将讨论潜在的物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of gallium implant for advanced CMOS halo/pocket optimization
Optimization of halo profile for advanced MOSFET device is important to control device short channel effect as well as device leakage. Multiple halo implants, such as mixture of Indium and boron to tailor the halo formation, have been used widely for n-FET devices. Amid its AMU and solubility, Gallium has a potential for better halo activation than Indium and reduced lateral straggling than boron. Therefore, Gallium could be a promising specie for device improvement through 1) halo optimization in planar devices, or 2) ground plane for retrograde well for better FinFET leakage characteristics. In this paper, Gallium is used to replace high scattering P dopant (HS-P) halo for SRAM or HS-P cluster halo for core NFET using a poly-SiON 28nm process with bare wafers and device splits. Secondary Ion Mass Spectroscopy (SIMS) was employed for dopant profiles for as-implanted and after thermal process. It is shown that when replacing HS-P or HS-P cluster halo by Gallium an excessive device shift is observed. The overlap capacitance indicates that overlap lateral diffusion regions are significant different with Gallium halo than established process flow. The paper will discuss potential underlying physical mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信