非松散的负环面结

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Irena Matkovič
{"title":"非松散的负环面结","authors":"Irena Matkovič","doi":"10.4171/qt/169","DOIUrl":null,"url":null,"abstract":"We study Legendrian and transverse realizations of the negative torus knots $T_{(p,-q)}$ in all contact structures on the $3$-sphere. We give a complete classification of the strongly non-loose transverse realizations and the strongly non-loose Legendrian realizations with the Thurston-Bennequin invariant smaller than $-pq$. \nAdditionally, we study the Legendrian invariants of these knots in the minus version of the knot Floer homology, obtaining that $U\\cdot\\mathfrak L(L)$ vanishes for any Legendrian negative torus knot $L$ in any overtwisted structure, and that the strongly non-loose transverse realizations $T$ are characterized by having non-zero invariant $\\mathfrak T(T)$. \nAlong the way, we relate our Legendrian realizations to the tight contact structures on the Legendrian surgeries along them. Specifically, we realize all tight structures on the lens spaces $L(pq+1,p^2)$ as a single Legendrian surgery on a Legendrian $T_{(p,-q)}$, and we relate transverse realizations in overtwisted structures to the non-fillable tight structures on the large negative surgeries along the underlying knots.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-loose negative torus knots\",\"authors\":\"Irena Matkovič\",\"doi\":\"10.4171/qt/169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Legendrian and transverse realizations of the negative torus knots $T_{(p,-q)}$ in all contact structures on the $3$-sphere. We give a complete classification of the strongly non-loose transverse realizations and the strongly non-loose Legendrian realizations with the Thurston-Bennequin invariant smaller than $-pq$. \\nAdditionally, we study the Legendrian invariants of these knots in the minus version of the knot Floer homology, obtaining that $U\\\\cdot\\\\mathfrak L(L)$ vanishes for any Legendrian negative torus knot $L$ in any overtwisted structure, and that the strongly non-loose transverse realizations $T$ are characterized by having non-zero invariant $\\\\mathfrak T(T)$. \\nAlong the way, we relate our Legendrian realizations to the tight contact structures on the Legendrian surgeries along them. Specifically, we realize all tight structures on the lens spaces $L(pq+1,p^2)$ as a single Legendrian surgery on a Legendrian $T_{(p,-q)}$, and we relate transverse realizations in overtwisted structures to the non-fillable tight structures on the large negative surgeries along the underlying knots.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/169\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

研究了负环面结点$T_{(p,-q)}$在球面上的所有接触结构中的Legendrian实现和横向实现。给出了Thurston-Bennequin不变量小于$-pq$的强非松散横向实现和强非松散Legendrian实现的完整分类。此外,我们研究了这些结在负版花同调中的Legendrian不变量,得到了在任意超扭结构中任意Legendrian负环面结$L$的$U\cdot\mathfrak L(L)$消失,以及强非松散横向实现$T$具有非零不变量$\mathfrak T(T)$的特征。在这个过程中,我们将我们的Legendrian实现与沿着它们的Legendrian手术的紧密接触结构联系起来。具体地说,我们将透镜空间$L(pq+1,p^2)$上的所有紧结构实现为Legendrian $T_{(p,-q)}$上的单个Legendrian手术,并将过扭结构中的横向实现与沿着下面结的大负手术上的不可填充紧结构联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-loose negative torus knots
We study Legendrian and transverse realizations of the negative torus knots $T_{(p,-q)}$ in all contact structures on the $3$-sphere. We give a complete classification of the strongly non-loose transverse realizations and the strongly non-loose Legendrian realizations with the Thurston-Bennequin invariant smaller than $-pq$. Additionally, we study the Legendrian invariants of these knots in the minus version of the knot Floer homology, obtaining that $U\cdot\mathfrak L(L)$ vanishes for any Legendrian negative torus knot $L$ in any overtwisted structure, and that the strongly non-loose transverse realizations $T$ are characterized by having non-zero invariant $\mathfrak T(T)$. Along the way, we relate our Legendrian realizations to the tight contact structures on the Legendrian surgeries along them. Specifically, we realize all tight structures on the lens spaces $L(pq+1,p^2)$ as a single Legendrian surgery on a Legendrian $T_{(p,-q)}$, and we relate transverse realizations in overtwisted structures to the non-fillable tight structures on the large negative surgeries along the underlying knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信