{"title":"采用电池储能系统(BSS)的调峰机制与太阳能预测","authors":"L. Yong","doi":"10.37936/ecti-eec.2023212.249826","DOIUrl":null,"url":null,"abstract":"Maximum demand (kW) has contributed significantly to expensive electricity bills. A modern-day solution for overcoming the penalty demand charges is to utilize the peak shaving method. To perform peak shaving, a battery storage system (BSS) is used. This methodinvolves the charging and discharging of the battery during high and low demand respectively, thus reducing the penalty incurred from the electricity utility company. To charge the battery, a photovoltaic (PV) system is coupled with the BSS. There is currently no BSS algorithm in existence under the microgrid to shave maximum demand with the aid of solar forecasting. In this paper, an algorithm for the BSS to achieve peak shave will be developed with the use of solar PV forecasting. The load profile of a building is used in this study as a reference for future consumption. The developed algorithm releases the energy stored in the BSS to shave the critical demand based on solar forecasting and the BSS state of charge (SOC). In short, this algorithm provides a green solution for reducing the demand charges from the electricity company.","PeriodicalId":38808,"journal":{"name":"Transactions on Electrical Engineering, Electronics, and Communications","volume":"344 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peak Shaving Mechanism Employing a Battery Storage System (BSS) and Solar Forecasting\",\"authors\":\"L. Yong\",\"doi\":\"10.37936/ecti-eec.2023212.249826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum demand (kW) has contributed significantly to expensive electricity bills. A modern-day solution for overcoming the penalty demand charges is to utilize the peak shaving method. To perform peak shaving, a battery storage system (BSS) is used. This methodinvolves the charging and discharging of the battery during high and low demand respectively, thus reducing the penalty incurred from the electricity utility company. To charge the battery, a photovoltaic (PV) system is coupled with the BSS. There is currently no BSS algorithm in existence under the microgrid to shave maximum demand with the aid of solar forecasting. In this paper, an algorithm for the BSS to achieve peak shave will be developed with the use of solar PV forecasting. The load profile of a building is used in this study as a reference for future consumption. The developed algorithm releases the energy stored in the BSS to shave the critical demand based on solar forecasting and the BSS state of charge (SOC). In short, this algorithm provides a green solution for reducing the demand charges from the electricity company.\",\"PeriodicalId\":38808,\"journal\":{\"name\":\"Transactions on Electrical Engineering, Electronics, and Communications\",\"volume\":\"344 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Electrical Engineering, Electronics, and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37936/ecti-eec.2023212.249826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Electrical Engineering, Electronics, and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37936/ecti-eec.2023212.249826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Peak Shaving Mechanism Employing a Battery Storage System (BSS) and Solar Forecasting
Maximum demand (kW) has contributed significantly to expensive electricity bills. A modern-day solution for overcoming the penalty demand charges is to utilize the peak shaving method. To perform peak shaving, a battery storage system (BSS) is used. This methodinvolves the charging and discharging of the battery during high and low demand respectively, thus reducing the penalty incurred from the electricity utility company. To charge the battery, a photovoltaic (PV) system is coupled with the BSS. There is currently no BSS algorithm in existence under the microgrid to shave maximum demand with the aid of solar forecasting. In this paper, an algorithm for the BSS to achieve peak shave will be developed with the use of solar PV forecasting. The load profile of a building is used in this study as a reference for future consumption. The developed algorithm releases the energy stored in the BSS to shave the critical demand based on solar forecasting and the BSS state of charge (SOC). In short, this algorithm provides a green solution for reducing the demand charges from the electricity company.