Ingrid M. Padilla Espinosa, Nirmalay Barua, Ram V. Mohan
{"title":"硅酸盐水泥主要成分的静水压缩和压力相变——通过分子动力学建模的见解","authors":"Ingrid M. Padilla Espinosa, Nirmalay Barua, Ram V. Mohan","doi":"10.1016/j.cement.2021.100017","DOIUrl":null,"url":null,"abstract":"<div><p>The complex composite material cement paste (CP) is under high pressures in underwater applications and when impact loading occurs. The mechanical behavior of cement paste to hydrostatic compression results from mechanical deformations of each phase, including unhydrated and hydrated minerals. Molecular Dynamics was used to study the atomistic deformation of individual unhydrated cement phases with increasing hydrostatic pressures. The pressure-specific volume Birch-Murnaghan equation of state (EoS) and the bulk modulus at zero pressure were determined for each phase. Results show that the bulk modulus and compressibility are pressure dependent. For tricalcium silicate (C<sub>3</sub>S), dicalcium silicate (C<sub>2</sub>S), and tricalcium aluminate (C<sub>3</sub>A), the bulk modulus increases, while the volume compression decreases with increasing pressure. The C<sub>3</sub>S and C<sub>3</sub>A phases are stable during hydrostatic compression and exhibit isotropic behavior. The C<sub>2</sub>S phase is not stable and shows anisotropic behavior. These results explain the effect of unreacted cement clinkers on cement paste mechanical behavior under high pressure based on the response of individual phases.</p></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"7 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666549221000141/pdfft?md5=a33f95fab9df10e800344575a682d53e&pid=1-s2.0-S2666549221000141-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Hydrostatic compression and pressure phase transition of major Portland cement constituents – Insights via molecular dynamics modeling\",\"authors\":\"Ingrid M. Padilla Espinosa, Nirmalay Barua, Ram V. Mohan\",\"doi\":\"10.1016/j.cement.2021.100017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex composite material cement paste (CP) is under high pressures in underwater applications and when impact loading occurs. The mechanical behavior of cement paste to hydrostatic compression results from mechanical deformations of each phase, including unhydrated and hydrated minerals. Molecular Dynamics was used to study the atomistic deformation of individual unhydrated cement phases with increasing hydrostatic pressures. The pressure-specific volume Birch-Murnaghan equation of state (EoS) and the bulk modulus at zero pressure were determined for each phase. Results show that the bulk modulus and compressibility are pressure dependent. For tricalcium silicate (C<sub>3</sub>S), dicalcium silicate (C<sub>2</sub>S), and tricalcium aluminate (C<sub>3</sub>A), the bulk modulus increases, while the volume compression decreases with increasing pressure. The C<sub>3</sub>S and C<sub>3</sub>A phases are stable during hydrostatic compression and exhibit isotropic behavior. The C<sub>2</sub>S phase is not stable and shows anisotropic behavior. These results explain the effect of unreacted cement clinkers on cement paste mechanical behavior under high pressure based on the response of individual phases.</p></div>\",\"PeriodicalId\":100225,\"journal\":{\"name\":\"CEMENT\",\"volume\":\"7 \",\"pages\":\"Article 100017\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666549221000141/pdfft?md5=a33f95fab9df10e800344575a682d53e&pid=1-s2.0-S2666549221000141-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEMENT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666549221000141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549221000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrostatic compression and pressure phase transition of major Portland cement constituents – Insights via molecular dynamics modeling
The complex composite material cement paste (CP) is under high pressures in underwater applications and when impact loading occurs. The mechanical behavior of cement paste to hydrostatic compression results from mechanical deformations of each phase, including unhydrated and hydrated minerals. Molecular Dynamics was used to study the atomistic deformation of individual unhydrated cement phases with increasing hydrostatic pressures. The pressure-specific volume Birch-Murnaghan equation of state (EoS) and the bulk modulus at zero pressure were determined for each phase. Results show that the bulk modulus and compressibility are pressure dependent. For tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A), the bulk modulus increases, while the volume compression decreases with increasing pressure. The C3S and C3A phases are stable during hydrostatic compression and exhibit isotropic behavior. The C2S phase is not stable and shows anisotropic behavior. These results explain the effect of unreacted cement clinkers on cement paste mechanical behavior under high pressure based on the response of individual phases.