Xiangan You, Xiaofeng Sun, Jing-ming Fei, Minghua Zhang, Bin-bin Zhang, Tao Chen, Yuqi Qin, Nana Rong, Chengan Wan
{"title":"用于空间应用的氮化镓负载点DC-DC变换器","authors":"Xiangan You, Xiaofeng Sun, Jing-ming Fei, Minghua Zhang, Bin-bin Zhang, Tao Chen, Yuqi Qin, Nana Rong, Chengan Wan","doi":"10.1109/ESPC.2019.8932088","DOIUrl":null,"url":null,"abstract":"This paper discusses the evaluation and prototyping of a 12V/3.3V Gallium-Nitride (GaN) point-of-load converter for satellite applications. Traditional power converters used in spacecraft are designed with silicon devices, and there are limitations in efficiency, package parasitic, and thermal management that must be addressed at frequencies above 500kHz. GaN HEMTs have advantages of TID tolerance, shorter turn-on/off time, and lower driving loss. By utilizing GaN HEMTs, switching frequency of 2MHz is selected to trade off volume and efficiency. Low parasitic loop inductance is realized by appropriate layout, and the peak voltage of the switches has been reduced. With the 3-D integration architecture, the junction-to-board thermal resistance has been reduced, and 20A output current is realized in a volume of $15\\times 15\\times 5.5\\mathrm{mm}^{3}$. Calculations, simulations and experimental results are provided to evaluate the performance of the converter.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gallium-Nitride Point-of-load DC-DC Converter for Space Applications\",\"authors\":\"Xiangan You, Xiaofeng Sun, Jing-ming Fei, Minghua Zhang, Bin-bin Zhang, Tao Chen, Yuqi Qin, Nana Rong, Chengan Wan\",\"doi\":\"10.1109/ESPC.2019.8932088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the evaluation and prototyping of a 12V/3.3V Gallium-Nitride (GaN) point-of-load converter for satellite applications. Traditional power converters used in spacecraft are designed with silicon devices, and there are limitations in efficiency, package parasitic, and thermal management that must be addressed at frequencies above 500kHz. GaN HEMTs have advantages of TID tolerance, shorter turn-on/off time, and lower driving loss. By utilizing GaN HEMTs, switching frequency of 2MHz is selected to trade off volume and efficiency. Low parasitic loop inductance is realized by appropriate layout, and the peak voltage of the switches has been reduced. With the 3-D integration architecture, the junction-to-board thermal resistance has been reduced, and 20A output current is realized in a volume of $15\\\\times 15\\\\times 5.5\\\\mathrm{mm}^{3}$. Calculations, simulations and experimental results are provided to evaluate the performance of the converter.\",\"PeriodicalId\":6734,\"journal\":{\"name\":\"2019 European Space Power Conference (ESPC)\",\"volume\":\"11 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Space Power Conference (ESPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESPC.2019.8932088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Gallium-Nitride Point-of-load DC-DC Converter for Space Applications
This paper discusses the evaluation and prototyping of a 12V/3.3V Gallium-Nitride (GaN) point-of-load converter for satellite applications. Traditional power converters used in spacecraft are designed with silicon devices, and there are limitations in efficiency, package parasitic, and thermal management that must be addressed at frequencies above 500kHz. GaN HEMTs have advantages of TID tolerance, shorter turn-on/off time, and lower driving loss. By utilizing GaN HEMTs, switching frequency of 2MHz is selected to trade off volume and efficiency. Low parasitic loop inductance is realized by appropriate layout, and the peak voltage of the switches has been reduced. With the 3-D integration architecture, the junction-to-board thermal resistance has been reduced, and 20A output current is realized in a volume of $15\times 15\times 5.5\mathrm{mm}^{3}$. Calculations, simulations and experimental results are provided to evaluate the performance of the converter.