{"title":"环氧基导电胶粘剂的微机器人纳米压痕研究","authors":"I. Mircea, S. Fatikow, A. Sill","doi":"10.1109/NANO.2007.4601289","DOIUrl":null,"url":null,"abstract":"Microrobot-based nanoindentation is a relatively new testing technique, which uses microrobot based methods for performing nanoindentation experiments. The use of the microrobot-based nanoindentation is a example how microrobotic technology can help the materials research. In this work, the hardness of an epoxy-based silver-filled electrically conductive adhesive (ECA) type PC 3002 has been determined using this method. Flat ECA specimens have been investigated after a first curing at 70degC for 120 minutes, respectively after a curing time of 150 minutes, 180 minutes, 240 minutes, 300 minutes, and finally after 325 minutes at the same temperature. The maximum indentation depth was 1 mum. The hardness of the ECA has shown an increase with the increase of the curing time at constant temperature. The set-up uses a Berkovich diamond tip for performing nanoindentation tests. The set-up requires calibrations with reference specimens (fused silica and sapphire) for calculating hardness and Young's modulus of the tested material. Preliminary results are very promising: by comparing the slope of the loading stage of the nanoindentation tests on different specimens, the difference in hardness can be qualitatively evidenced.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"23 1","pages":"719-722"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microrobot-based nanoindentation of an epoxy-based electrically conductive adhesive\",\"authors\":\"I. Mircea, S. Fatikow, A. Sill\",\"doi\":\"10.1109/NANO.2007.4601289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microrobot-based nanoindentation is a relatively new testing technique, which uses microrobot based methods for performing nanoindentation experiments. The use of the microrobot-based nanoindentation is a example how microrobotic technology can help the materials research. In this work, the hardness of an epoxy-based silver-filled electrically conductive adhesive (ECA) type PC 3002 has been determined using this method. Flat ECA specimens have been investigated after a first curing at 70degC for 120 minutes, respectively after a curing time of 150 minutes, 180 minutes, 240 minutes, 300 minutes, and finally after 325 minutes at the same temperature. The maximum indentation depth was 1 mum. The hardness of the ECA has shown an increase with the increase of the curing time at constant temperature. The set-up uses a Berkovich diamond tip for performing nanoindentation tests. The set-up requires calibrations with reference specimens (fused silica and sapphire) for calculating hardness and Young's modulus of the tested material. Preliminary results are very promising: by comparing the slope of the loading stage of the nanoindentation tests on different specimens, the difference in hardness can be qualitatively evidenced.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"23 1\",\"pages\":\"719-722\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microrobot-based nanoindentation of an epoxy-based electrically conductive adhesive
Microrobot-based nanoindentation is a relatively new testing technique, which uses microrobot based methods for performing nanoindentation experiments. The use of the microrobot-based nanoindentation is a example how microrobotic technology can help the materials research. In this work, the hardness of an epoxy-based silver-filled electrically conductive adhesive (ECA) type PC 3002 has been determined using this method. Flat ECA specimens have been investigated after a first curing at 70degC for 120 minutes, respectively after a curing time of 150 minutes, 180 minutes, 240 minutes, 300 minutes, and finally after 325 minutes at the same temperature. The maximum indentation depth was 1 mum. The hardness of the ECA has shown an increase with the increase of the curing time at constant temperature. The set-up uses a Berkovich diamond tip for performing nanoindentation tests. The set-up requires calibrations with reference specimens (fused silica and sapphire) for calculating hardness and Young's modulus of the tested material. Preliminary results are very promising: by comparing the slope of the loading stage of the nanoindentation tests on different specimens, the difference in hardness can be qualitatively evidenced.