基于正交学习网络的约束主成分分析

S. Kung
{"title":"基于正交学习网络的约束主成分分析","authors":"S. Kung","doi":"10.1109/ISCAS.1990.112180","DOIUrl":null,"url":null,"abstract":"The regular principal components (PC) analysis of stochastic processes is extended to the so-called constrained principal components (CPC) problem. The CPC analysis involves extracting representative components which contain the most information about the original processes, The CPC solution has to be extracted from a given constraint subspace. Therefore, the CPC solution may be adopted to best recover the original signal and simultaneously avoid the undesirably noisy or redundant components. A technique for finding optimal CPC solutions via an orthogonal learning network (OLN) is proposed. The underlying numerical analysis for the theoretical proof of the convergency of OLN is discussed. The same numerical analysis provides a useful estimate of optimal learning rates leading to very fast convergence speed. Simulation and application examples are provided.<<ETX>>","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"62 1","pages":"719-722 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Constrained principal component analysis via an orthogonal learning network\",\"authors\":\"S. Kung\",\"doi\":\"10.1109/ISCAS.1990.112180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regular principal components (PC) analysis of stochastic processes is extended to the so-called constrained principal components (CPC) problem. The CPC analysis involves extracting representative components which contain the most information about the original processes, The CPC solution has to be extracted from a given constraint subspace. Therefore, the CPC solution may be adopted to best recover the original signal and simultaneously avoid the undesirably noisy or redundant components. A technique for finding optimal CPC solutions via an orthogonal learning network (OLN) is proposed. The underlying numerical analysis for the theoretical proof of the convergency of OLN is discussed. The same numerical analysis provides a useful estimate of optimal learning rates leading to very fast convergence speed. Simulation and application examples are provided.<<ETX>>\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"62 1\",\"pages\":\"719-722 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1990.112180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.1990.112180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

将随机过程的正则主成分分析推广到约束主成分问题。CPC分析涉及提取包含有关原始过程的最多信息的代表性组件,CPC解决方案必须从给定的约束子空间中提取。因此,可以采用CPC解决方案,以最好地恢复原始信号,同时避免不必要的噪声或冗余组件。提出了一种利用正交学习网络(OLN)寻找最优CPC解的方法。讨论了OLN收敛性理论证明的基本数值分析。同样的数值分析提供了一个有用的最优学习率估计,导致非常快的收敛速度。给出了仿真和应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained principal component analysis via an orthogonal learning network
The regular principal components (PC) analysis of stochastic processes is extended to the so-called constrained principal components (CPC) problem. The CPC analysis involves extracting representative components which contain the most information about the original processes, The CPC solution has to be extracted from a given constraint subspace. Therefore, the CPC solution may be adopted to best recover the original signal and simultaneously avoid the undesirably noisy or redundant components. A technique for finding optimal CPC solutions via an orthogonal learning network (OLN) is proposed. The underlying numerical analysis for the theoretical proof of the convergency of OLN is discussed. The same numerical analysis provides a useful estimate of optimal learning rates leading to very fast convergence speed. Simulation and application examples are provided.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信