{"title":"fr<s:1>空间的一个多重性定理","authors":"K. Eftekharinasab","doi":"10.15407/dopovidi2022.05.010","DOIUrl":null,"url":null,"abstract":"This note serves to announce a multiplicity result for Keller C1c -functionals on Fréchet spaces which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lyusternik—Schnirelmann category.","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiplicity theorem for Fréchet spaces\",\"authors\":\"K. Eftekharinasab\",\"doi\":\"10.15407/dopovidi2022.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note serves to announce a multiplicity result for Keller C1c -functionals on Fréchet spaces which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lyusternik—Schnirelmann category.\",\"PeriodicalId\":20898,\"journal\":{\"name\":\"Reports of the National Academy of Sciences of Ukraine\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of the National Academy of Sciences of Ukraine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/dopovidi2022.05.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2022.05.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This note serves to announce a multiplicity result for Keller C1c -functionals on Fréchet spaces which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lyusternik—Schnirelmann category.