fr空间的一个多重性定理

K. Eftekharinasab
{"title":"fr<s:1>空间的一个多重性定理","authors":"K. Eftekharinasab","doi":"10.15407/dopovidi2022.05.010","DOIUrl":null,"url":null,"abstract":"This note serves to announce a multiplicity result for Keller C1c -functionals on Fréchet spaces which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lyusternik—Schnirelmann category.","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiplicity theorem for Fréchet spaces\",\"authors\":\"K. Eftekharinasab\",\"doi\":\"10.15407/dopovidi2022.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note serves to announce a multiplicity result for Keller C1c -functionals on Fréchet spaces which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lyusternik—Schnirelmann category.\",\"PeriodicalId\":20898,\"journal\":{\"name\":\"Reports of the National Academy of Sciences of Ukraine\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of the National Academy of Sciences of Ukraine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/dopovidi2022.05.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2022.05.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在离散子群作用下fr空间上不变的Keller C1c泛函的一个多重性结果。对于这样的泛函,我们通过应用Lyusternik-Schnirelmann范畴来评估临界点的最小数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiplicity theorem for Fréchet spaces
This note serves to announce a multiplicity result for Keller C1c -functionals on Fréchet spaces which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lyusternik—Schnirelmann category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信