{"title":"厄瓜多尔基金经理的客户流失预测模型","authors":"M. Bohorquez, Joyce Torys, Milton Paredes","doi":"10.46677/compendium.v7i1.777","DOIUrl":null,"url":null,"abstract":"espanolLa existencia de una empresa esta justificada por sus clientes, quienes son considerados como los activos mas importantes. Ante mercados mas competitivos y donde las necesidades de los clientes son cada vez mas exigentes, las empresas buscan eficiencia en el uso y el analisis de datos. Perder clientes es mas costoso que atraer nuevos clientes. El estudio sobre el comportamiento del cliente, particularmente su desercion, se ha convertido en una necesidad imperante dentro del ambito empresarial. En la presente investigacion se emplean tecnicas de mineria de datos para construir modelos de prediccion de desercion de clientes, los cuales pueden ser aplicados dentro del mercado de desintermediacion financiera. Los modelos estadisticos usados son: Arboles de decision, bosques aleatorios y regresion logistica, estos son evaluados en terminos de precision mediante area debajo de la curva de caracteristicas de operacion del receptor (AUC). La evaluacion de los resultados, muestran que el bosque aleatorio tiene un mejor rendimiento que los otros modelos aplicados en el estudio. EnglishThe existence of a company is justified by its customers, who are active as the most important assets. Faced with more competitive markets and where the needs of customers are increasingly demanding, companies seek efficiency in the use and analysis of data. Losing customers is more expensive than attracting new customers. The study on customer behavior, specifically attrition, has become a prevailing need within the business environment. In the presentation of research, data mining techniques are used to build models of customer attrition prediction, which can be applied within the financial disintermediation market. The statistical models used are: Decision Trees, Random Forests and Logistic Regression, these are evaluated in terms of accuracy by the area below the receiver operating characteristics curve (ROC). The evaluation of the results, the evaluation that the random forest has a better performance than the other models applied in the study.","PeriodicalId":55234,"journal":{"name":"Compendium-Continuing Education for Veterinarians","volume":"38 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELOS DE PREDICCIÓN DE DESERCIÓN DE CLIENTES PARA UNA ADMINISTRADORA DE FONDOS ECUATORIANA\",\"authors\":\"M. Bohorquez, Joyce Torys, Milton Paredes\",\"doi\":\"10.46677/compendium.v7i1.777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"espanolLa existencia de una empresa esta justificada por sus clientes, quienes son considerados como los activos mas importantes. Ante mercados mas competitivos y donde las necesidades de los clientes son cada vez mas exigentes, las empresas buscan eficiencia en el uso y el analisis de datos. Perder clientes es mas costoso que atraer nuevos clientes. El estudio sobre el comportamiento del cliente, particularmente su desercion, se ha convertido en una necesidad imperante dentro del ambito empresarial. En la presente investigacion se emplean tecnicas de mineria de datos para construir modelos de prediccion de desercion de clientes, los cuales pueden ser aplicados dentro del mercado de desintermediacion financiera. Los modelos estadisticos usados son: Arboles de decision, bosques aleatorios y regresion logistica, estos son evaluados en terminos de precision mediante area debajo de la curva de caracteristicas de operacion del receptor (AUC). La evaluacion de los resultados, muestran que el bosque aleatorio tiene un mejor rendimiento que los otros modelos aplicados en el estudio. EnglishThe existence of a company is justified by its customers, who are active as the most important assets. Faced with more competitive markets and where the needs of customers are increasingly demanding, companies seek efficiency in the use and analysis of data. Losing customers is more expensive than attracting new customers. The study on customer behavior, specifically attrition, has become a prevailing need within the business environment. In the presentation of research, data mining techniques are used to build models of customer attrition prediction, which can be applied within the financial disintermediation market. The statistical models used are: Decision Trees, Random Forests and Logistic Regression, these are evaluated in terms of accuracy by the area below the receiver operating characteristics curve (ROC). The evaluation of the results, the evaluation that the random forest has a better performance than the other models applied in the study.\",\"PeriodicalId\":55234,\"journal\":{\"name\":\"Compendium-Continuing Education for Veterinarians\",\"volume\":\"38 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compendium-Continuing Education for Veterinarians\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46677/compendium.v7i1.777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compendium-Continuing Education for Veterinarians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46677/compendium.v7i1.777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODELOS DE PREDICCIÓN DE DESERCIÓN DE CLIENTES PARA UNA ADMINISTRADORA DE FONDOS ECUATORIANA
espanolLa existencia de una empresa esta justificada por sus clientes, quienes son considerados como los activos mas importantes. Ante mercados mas competitivos y donde las necesidades de los clientes son cada vez mas exigentes, las empresas buscan eficiencia en el uso y el analisis de datos. Perder clientes es mas costoso que atraer nuevos clientes. El estudio sobre el comportamiento del cliente, particularmente su desercion, se ha convertido en una necesidad imperante dentro del ambito empresarial. En la presente investigacion se emplean tecnicas de mineria de datos para construir modelos de prediccion de desercion de clientes, los cuales pueden ser aplicados dentro del mercado de desintermediacion financiera. Los modelos estadisticos usados son: Arboles de decision, bosques aleatorios y regresion logistica, estos son evaluados en terminos de precision mediante area debajo de la curva de caracteristicas de operacion del receptor (AUC). La evaluacion de los resultados, muestran que el bosque aleatorio tiene un mejor rendimiento que los otros modelos aplicados en el estudio. EnglishThe existence of a company is justified by its customers, who are active as the most important assets. Faced with more competitive markets and where the needs of customers are increasingly demanding, companies seek efficiency in the use and analysis of data. Losing customers is more expensive than attracting new customers. The study on customer behavior, specifically attrition, has become a prevailing need within the business environment. In the presentation of research, data mining techniques are used to build models of customer attrition prediction, which can be applied within the financial disintermediation market. The statistical models used are: Decision Trees, Random Forests and Logistic Regression, these are evaluated in terms of accuracy by the area below the receiver operating characteristics curve (ROC). The evaluation of the results, the evaluation that the random forest has a better performance than the other models applied in the study.