Camassa-Holm方程的多孤子解

Yi-shen Li, Jin E. Zhang
{"title":"Camassa-Holm方程的多孤子解","authors":"Yi-shen Li, Jin E. Zhang","doi":"10.1098/rspa.2004.1331","DOIUrl":null,"url":null,"abstract":"This paper refines Johnso's implementation of Constantin's method for solving the Camassa–Holm equation for a multiple–soliton solution. An analytical formula for the q(y) and an explicit relation between x and y are found. An algorithm of solving for u(y) is presented. How to introduce time variable t into the solution is also clearly explained.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"21 1","pages":"2617 - 2627"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"The multiple-soliton solution of the Camassa-Holm equation\",\"authors\":\"Yi-shen Li, Jin E. Zhang\",\"doi\":\"10.1098/rspa.2004.1331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper refines Johnso's implementation of Constantin's method for solving the Camassa–Holm equation for a multiple–soliton solution. An analytical formula for the q(y) and an explicit relation between x and y are found. An algorithm of solving for u(y) is presented. How to introduce time variable t into the solution is also clearly explained.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"21 1\",\"pages\":\"2617 - 2627\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

本文改进了Johnso对Constantin求解多孤子解Camassa-Holm方程的方法的实现。得到了q(y)的解析式和x与y的显式关系。给出了求解u(y)的一种算法。如何将时间变量t引入到解中也得到了清晰的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The multiple-soliton solution of the Camassa-Holm equation
This paper refines Johnso's implementation of Constantin's method for solving the Camassa–Holm equation for a multiple–soliton solution. An analytical formula for the q(y) and an explicit relation between x and y are found. An algorithm of solving for u(y) is presented. How to introduce time variable t into the solution is also clearly explained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信