{"title":"吕梁地区碳质气溶胶的季节变化、空间分布和来源解析","authors":"Xiaofang Li, Ling Mu, Tianya Liu, Yangyong Li, Chuanyang Feng, Xin Jiang, Ziye Liu, Mei Tian","doi":"10.1071/en22026","DOIUrl":null,"url":null,"abstract":"Environmental context Lvliang, one of the main cities on the Fenwei Plain, is a key atmospheric pollution prevention area in China. Identification of sources of aerosols is essential to improving environmental air quality in this region. The quantitative source apportionment of carbonaceous aerosols performed in this study provides a better understanding of their sources and implications for climate and air-quality management policies in the Fenwei plain. Rationale Organic carbon (OC) and elemental carbon (EC) are major components of fine particulate matter (PM2.5), and they are of concern due to their significant impacts on human health and climate. Methodology PM2.5 samples were collected daily during four consecutive seasons from 2018 to 2019. This paper highlights the seasonal variations, sources and transport characteristics of carbonaceous aerosol in Lvliang, China. Results The OC and EC concentrations exhibited strong seasonal variations, with the highest in winter, mainly due to high pollution caused by winter heating in northern cities, and secondary OC (SOC) contribution. The average OC/EC ratio (1.72) in Lvliang was lower than those in most regions in China, further indicating that this region was greatly affected by primary source emissions. The highest SOC/OC ratio in summer (25.3%) was due to the positive correlation between SOC and temperature. Through the positive matrix factorisation (PMF) model, four sources of carbonaceous aerosols were identified: vehicle emissions (31.26%), coal combustion (30.83%), biomass combustion (24.36%) and dust emissions (13.55%). Potential source contribution function (PSCF) results indicated that in addition to the impact of local emissions, coal emissions from Ningxia and Shaanxi, motor vehicle emissions and biomass from Inner Mongolia and Ningxia and dust from Shaanxi and Henan Provinces were the major contributors to pollution. Discussion These data provide key information for formulating emission reduction policies and improving air quality on the Fenwei Plain and highlights the urgent need for inter-regional prevention and control measures for the cities in Lvliang.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":"21 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Carbonaceous aerosols in Lvliang, China: seasonal variation, spatial distribution and source apportionment\",\"authors\":\"Xiaofang Li, Ling Mu, Tianya Liu, Yangyong Li, Chuanyang Feng, Xin Jiang, Ziye Liu, Mei Tian\",\"doi\":\"10.1071/en22026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental context Lvliang, one of the main cities on the Fenwei Plain, is a key atmospheric pollution prevention area in China. Identification of sources of aerosols is essential to improving environmental air quality in this region. The quantitative source apportionment of carbonaceous aerosols performed in this study provides a better understanding of their sources and implications for climate and air-quality management policies in the Fenwei plain. Rationale Organic carbon (OC) and elemental carbon (EC) are major components of fine particulate matter (PM2.5), and they are of concern due to their significant impacts on human health and climate. Methodology PM2.5 samples were collected daily during four consecutive seasons from 2018 to 2019. This paper highlights the seasonal variations, sources and transport characteristics of carbonaceous aerosol in Lvliang, China. Results The OC and EC concentrations exhibited strong seasonal variations, with the highest in winter, mainly due to high pollution caused by winter heating in northern cities, and secondary OC (SOC) contribution. The average OC/EC ratio (1.72) in Lvliang was lower than those in most regions in China, further indicating that this region was greatly affected by primary source emissions. The highest SOC/OC ratio in summer (25.3%) was due to the positive correlation between SOC and temperature. Through the positive matrix factorisation (PMF) model, four sources of carbonaceous aerosols were identified: vehicle emissions (31.26%), coal combustion (30.83%), biomass combustion (24.36%) and dust emissions (13.55%). Potential source contribution function (PSCF) results indicated that in addition to the impact of local emissions, coal emissions from Ningxia and Shaanxi, motor vehicle emissions and biomass from Inner Mongolia and Ningxia and dust from Shaanxi and Henan Provinces were the major contributors to pollution. Discussion These data provide key information for formulating emission reduction policies and improving air quality on the Fenwei Plain and highlights the urgent need for inter-regional prevention and control measures for the cities in Lvliang.\",\"PeriodicalId\":11714,\"journal\":{\"name\":\"Environmental Chemistry\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/en22026\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/en22026","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Carbonaceous aerosols in Lvliang, China: seasonal variation, spatial distribution and source apportionment
Environmental context Lvliang, one of the main cities on the Fenwei Plain, is a key atmospheric pollution prevention area in China. Identification of sources of aerosols is essential to improving environmental air quality in this region. The quantitative source apportionment of carbonaceous aerosols performed in this study provides a better understanding of their sources and implications for climate and air-quality management policies in the Fenwei plain. Rationale Organic carbon (OC) and elemental carbon (EC) are major components of fine particulate matter (PM2.5), and they are of concern due to their significant impacts on human health and climate. Methodology PM2.5 samples were collected daily during four consecutive seasons from 2018 to 2019. This paper highlights the seasonal variations, sources and transport characteristics of carbonaceous aerosol in Lvliang, China. Results The OC and EC concentrations exhibited strong seasonal variations, with the highest in winter, mainly due to high pollution caused by winter heating in northern cities, and secondary OC (SOC) contribution. The average OC/EC ratio (1.72) in Lvliang was lower than those in most regions in China, further indicating that this region was greatly affected by primary source emissions. The highest SOC/OC ratio in summer (25.3%) was due to the positive correlation between SOC and temperature. Through the positive matrix factorisation (PMF) model, four sources of carbonaceous aerosols were identified: vehicle emissions (31.26%), coal combustion (30.83%), biomass combustion (24.36%) and dust emissions (13.55%). Potential source contribution function (PSCF) results indicated that in addition to the impact of local emissions, coal emissions from Ningxia and Shaanxi, motor vehicle emissions and biomass from Inner Mongolia and Ningxia and dust from Shaanxi and Henan Provinces were the major contributors to pollution. Discussion These data provide key information for formulating emission reduction policies and improving air quality on the Fenwei Plain and highlights the urgent need for inter-regional prevention and control measures for the cities in Lvliang.
期刊介绍:
Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged.
While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding.
Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited.
Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.