窄圆圆蝽与圆突蝽相互作用数学模型的多重稳定性分析

Pub Date : 2017-01-01 DOI:10.12988/JITE.2017.6938
Juliana Chitai, Adu A. M. Wasike
{"title":"窄圆圆蝽与圆突蝽相互作用数学模型的多重稳定性分析","authors":"Juliana Chitai, Adu A. M. Wasike","doi":"10.12988/JITE.2017.6938","DOIUrl":null,"url":null,"abstract":"We develop a Mathematical model showing the main dynamical regimes of the weed Opuntia stricta and the insect, Dactylopius opuntiae interaction. We prove that under appropriate conditions a positive solution of the system is asymptotically stable, unstable or it is a periodic solution. Stable equilibria points are characterised by endemic and epidemic populations. Endemic populations are regulated by the number of cacti trees available. Epidemic populations are limited by the total number of trees because mass attack of the insects may overcome resistance of any tree. Mathematics Subject Classification: 93A30, 92B05, 34C23","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistability analysis of a mathematical model of the interaction of Opuntia stricta and Dactylopius opuntiae\",\"authors\":\"Juliana Chitai, Adu A. M. Wasike\",\"doi\":\"10.12988/JITE.2017.6938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a Mathematical model showing the main dynamical regimes of the weed Opuntia stricta and the insect, Dactylopius opuntiae interaction. We prove that under appropriate conditions a positive solution of the system is asymptotically stable, unstable or it is a periodic solution. Stable equilibria points are characterised by endemic and epidemic populations. Endemic populations are regulated by the number of cacti trees available. Epidemic populations are limited by the total number of trees because mass attack of the insects may overcome resistance of any tree. Mathematics Subject Classification: 93A30, 92B05, 34C23\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/JITE.2017.6938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/JITE.2017.6938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个数学模型,显示了杂草Opuntia stricta和昆虫Dactylopius opuntiae相互作用的主要动力机制。证明了在适当条件下,系统的正解是渐近稳定的、不稳定的或周期解。稳定平衡点以地方性种群和流行种群为特征。地方性种群受可用仙人掌树数量的控制。流行的种群数量受到树木总数的限制,因为昆虫的大规模攻击可能会克服任何树木的抵抗力。数学学科分类:93A30、92B05、34C23
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multistability analysis of a mathematical model of the interaction of Opuntia stricta and Dactylopius opuntiae
We develop a Mathematical model showing the main dynamical regimes of the weed Opuntia stricta and the insect, Dactylopius opuntiae interaction. We prove that under appropriate conditions a positive solution of the system is asymptotically stable, unstable or it is a periodic solution. Stable equilibria points are characterised by endemic and epidemic populations. Endemic populations are regulated by the number of cacti trees available. Epidemic populations are limited by the total number of trees because mass attack of the insects may overcome resistance of any tree. Mathematics Subject Classification: 93A30, 92B05, 34C23
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信