{"title":"AZ91/生物活性玻璃梯度复合材料的摩擦挤压","authors":"Pourya Motavallian, S. Rabiee, H. Jamshidi Aval","doi":"10.1080/02670836.2023.2233261","DOIUrl":null,"url":null,"abstract":"The effect of the pre-friction extrusion microstructure of AZ91 billet on the microstructure, mechanical properties, and corrosion resistance of AZ91-bioactive glass surface composite rods was investigated. The results show that friction extrusion on AZ91 alloy billet with cast microstructure results in agglomerated bioactive glass particles in the composite rod microstructure. Compared to as-cast AZ91 alloy, friction extrusion on AZ91 alloy billet with cast microstructure results in 93% more corrosion resistance. Also, friction extrusion on AZ91 alloy billet with extruded microstructure leads to a gradient AZ91-bioactive glass composite rod with ultimate tensile strength, yield strength, and corrosion resistance of 9, 2, and 74% higher than AZ91 alloy rods, respectively.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friction extrusion of AZ91/bioactive glass gradient composite\",\"authors\":\"Pourya Motavallian, S. Rabiee, H. Jamshidi Aval\",\"doi\":\"10.1080/02670836.2023.2233261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of the pre-friction extrusion microstructure of AZ91 billet on the microstructure, mechanical properties, and corrosion resistance of AZ91-bioactive glass surface composite rods was investigated. The results show that friction extrusion on AZ91 alloy billet with cast microstructure results in agglomerated bioactive glass particles in the composite rod microstructure. Compared to as-cast AZ91 alloy, friction extrusion on AZ91 alloy billet with cast microstructure results in 93% more corrosion resistance. Also, friction extrusion on AZ91 alloy billet with extruded microstructure leads to a gradient AZ91-bioactive glass composite rod with ultimate tensile strength, yield strength, and corrosion resistance of 9, 2, and 74% higher than AZ91 alloy rods, respectively.\",\"PeriodicalId\":18232,\"journal\":{\"name\":\"Materials Science and Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670836.2023.2233261\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2233261","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Friction extrusion of AZ91/bioactive glass gradient composite
The effect of the pre-friction extrusion microstructure of AZ91 billet on the microstructure, mechanical properties, and corrosion resistance of AZ91-bioactive glass surface composite rods was investigated. The results show that friction extrusion on AZ91 alloy billet with cast microstructure results in agglomerated bioactive glass particles in the composite rod microstructure. Compared to as-cast AZ91 alloy, friction extrusion on AZ91 alloy billet with cast microstructure results in 93% more corrosion resistance. Also, friction extrusion on AZ91 alloy billet with extruded microstructure leads to a gradient AZ91-bioactive glass composite rod with ultimate tensile strength, yield strength, and corrosion resistance of 9, 2, and 74% higher than AZ91 alloy rods, respectively.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.