关于Hobson和Rogers的随机波动完全模型

M. Di Francesco, A. Pascucci
{"title":"关于Hobson和Rogers的随机波动完全模型","authors":"M. Di Francesco, A. Pascucci","doi":"10.1098/rspa.2004.1370","DOIUrl":null,"url":null,"abstract":"In the complete model with stochastic volatility by Hobson and Rogers, preference independent options prices are solutions to degenerate partial differential equations obtained by including additional state variables describing the dependence on past prices of the underlying. In this paper, we aim to emphasize the mathematical tractability of the model by presenting analytical and numerical results comparable with the known ones in the classical Black–Scholes environment.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"29 1","pages":"3327 - 3338"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"On the complete model with stochastic volatility by Hobson and Rogers\",\"authors\":\"M. Di Francesco, A. Pascucci\",\"doi\":\"10.1098/rspa.2004.1370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the complete model with stochastic volatility by Hobson and Rogers, preference independent options prices are solutions to degenerate partial differential equations obtained by including additional state variables describing the dependence on past prices of the underlying. In this paper, we aim to emphasize the mathematical tractability of the model by presenting analytical and numerical results comparable with the known ones in the classical Black–Scholes environment.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"29 1\",\"pages\":\"3327 - 3338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

在Hobson和Rogers的完全随机波动模型中,偏好无关的期权价格是退化偏微分方程的解,该方程通过包含描述对标的过去价格依赖的附加状态变量而得到。在本文中,我们旨在通过提供与经典布莱克-斯科尔斯环境中已知结果相媲美的解析和数值结果来强调模型的数学可追溯性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complete model with stochastic volatility by Hobson and Rogers
In the complete model with stochastic volatility by Hobson and Rogers, preference independent options prices are solutions to degenerate partial differential equations obtained by including additional state variables describing the dependence on past prices of the underlying. In this paper, we aim to emphasize the mathematical tractability of the model by presenting analytical and numerical results comparable with the known ones in the classical Black–Scholes environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信