{"title":"可解释和可解释的机器学习:以方法为中心的概述和具体示例","authors":"Ricards Marcinkevics, Julia E. Vogt","doi":"10.1002/widm.1493","DOIUrl":null,"url":null,"abstract":"Interpretability and explainability are crucial for machine learning (ML) and statistical applications in medicine, economics, law, and natural sciences and form an essential principle for ML model design and development. Although interpretability and explainability have escaped a precise and universal definition, many models and techniques motivated by these properties have been developed over the last 30 years, with the focus currently shifting toward deep learning. We will consider concrete examples of state‐of‐the‐art, including specially tailored rule‐based, sparse, and additive classification models, interpretable representation learning, and methods for explaining black‐box models post hoc. The discussion will emphasize the need for and relevance of interpretability and explainability, the divide between them, and the inductive biases behind the presented “zoo” of interpretable models and explanation methods.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"106 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interpretable and explainable machine learning: A methods‐centric overview with concrete examples\",\"authors\":\"Ricards Marcinkevics, Julia E. Vogt\",\"doi\":\"10.1002/widm.1493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interpretability and explainability are crucial for machine learning (ML) and statistical applications in medicine, economics, law, and natural sciences and form an essential principle for ML model design and development. Although interpretability and explainability have escaped a precise and universal definition, many models and techniques motivated by these properties have been developed over the last 30 years, with the focus currently shifting toward deep learning. We will consider concrete examples of state‐of‐the‐art, including specially tailored rule‐based, sparse, and additive classification models, interpretable representation learning, and methods for explaining black‐box models post hoc. The discussion will emphasize the need for and relevance of interpretability and explainability, the divide between them, and the inductive biases behind the presented “zoo” of interpretable models and explanation methods.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1493\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1493","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Interpretable and explainable machine learning: A methods‐centric overview with concrete examples
Interpretability and explainability are crucial for machine learning (ML) and statistical applications in medicine, economics, law, and natural sciences and form an essential principle for ML model design and development. Although interpretability and explainability have escaped a precise and universal definition, many models and techniques motivated by these properties have been developed over the last 30 years, with the focus currently shifting toward deep learning. We will consider concrete examples of state‐of‐the‐art, including specially tailored rule‐based, sparse, and additive classification models, interpretable representation learning, and methods for explaining black‐box models post hoc. The discussion will emphasize the need for and relevance of interpretability and explainability, the divide between them, and the inductive biases behind the presented “zoo” of interpretable models and explanation methods.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.