{"title":"骨组织工程用海藻酸盐/胶原复合生物墨水的研制与表征","authors":"T. Arahira, Kurumi Takimoto, M. Todo","doi":"10.26502/jbb.2642-91280080","DOIUrl":null,"url":null,"abstract":"Tissue engineering aims to construct artificial organs based on cells, growth factors, and scaffold materials. Scaffolds should promote cellular activity, provide sufficient nutrition, and remove waste products. In recent years, 3D bioprinters, which can suspend cells using bioink to fabricate 3D structures, are attracting considerable attention as a technology that enables uniform cell distribution. However, few studies have examined the mechanical properties of 3D scaffold by bioink. This study aims to develop a bioink with good mechanical properties that is easy to produce. As the result, compared with commercially available bioinks, the fabricated bioink is easy to prepare by mixing Alg-Na with a collagen solution and has superior mechanical properties. Our results indicate that some material properties, such as compressive modulus and surface structure, can be controlled by varying the ratio of collagen","PeriodicalId":15066,"journal":{"name":"Journal of Biotechnology and Biomedicine","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Characterization of Alginate/Collagen Composite Bioinks for Bone Tissue Engineering\",\"authors\":\"T. Arahira, Kurumi Takimoto, M. Todo\",\"doi\":\"10.26502/jbb.2642-91280080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue engineering aims to construct artificial organs based on cells, growth factors, and scaffold materials. Scaffolds should promote cellular activity, provide sufficient nutrition, and remove waste products. In recent years, 3D bioprinters, which can suspend cells using bioink to fabricate 3D structures, are attracting considerable attention as a technology that enables uniform cell distribution. However, few studies have examined the mechanical properties of 3D scaffold by bioink. This study aims to develop a bioink with good mechanical properties that is easy to produce. As the result, compared with commercially available bioinks, the fabricated bioink is easy to prepare by mixing Alg-Na with a collagen solution and has superior mechanical properties. Our results indicate that some material properties, such as compressive modulus and surface structure, can be controlled by varying the ratio of collagen\",\"PeriodicalId\":15066,\"journal\":{\"name\":\"Journal of Biotechnology and Biomedicine\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biotechnology and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26502/jbb.2642-91280080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biotechnology and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jbb.2642-91280080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and Characterization of Alginate/Collagen Composite Bioinks for Bone Tissue Engineering
Tissue engineering aims to construct artificial organs based on cells, growth factors, and scaffold materials. Scaffolds should promote cellular activity, provide sufficient nutrition, and remove waste products. In recent years, 3D bioprinters, which can suspend cells using bioink to fabricate 3D structures, are attracting considerable attention as a technology that enables uniform cell distribution. However, few studies have examined the mechanical properties of 3D scaffold by bioink. This study aims to develop a bioink with good mechanical properties that is easy to produce. As the result, compared with commercially available bioinks, the fabricated bioink is easy to prepare by mixing Alg-Na with a collagen solution and has superior mechanical properties. Our results indicate that some material properties, such as compressive modulus and surface structure, can be controlled by varying the ratio of collagen