{"title":"铁电/介电界面的C-V、P-V和电导多探针表征","authors":"Junkang Li, Y. Qu, M. Si, X. Lyu, P. Ye","doi":"10.1109/VLSITechnology18217.2020.9265069","DOIUrl":null,"url":null,"abstract":"In this work, we report on the multi-probe characterization of interfacial charges at the ferroelectric/dielectric (FE/DE) interface in response to both large-signal measurement associated with polarization switching and small-signal measurement without polarization switching. Charge densities at the FE/DE interface are extracted from temperature dependent C-V, P-V, conductance methods. It is found that the charge injection and accumulation at the FE/DE interface play a key role in the operation of FE/DE stack. These enormous trapped charges of 1013-1014 cm-2 at the FE/DE interface are supplied from the leakage current through the ultrathin DE layer. The proposed multi-probe measurement techniques provide a comprehensive understanding of FE/DE stack. The demonstrated leakage-assist polarization switching provides the new insights on the understanding of negative-capacitance (NC) effect and ferroelectric device performance.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"40 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-Probe Characterization of Ferroelectric/Dielectric Interface by C-V, P-V and Conductance Methods\",\"authors\":\"Junkang Li, Y. Qu, M. Si, X. Lyu, P. Ye\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we report on the multi-probe characterization of interfacial charges at the ferroelectric/dielectric (FE/DE) interface in response to both large-signal measurement associated with polarization switching and small-signal measurement without polarization switching. Charge densities at the FE/DE interface are extracted from temperature dependent C-V, P-V, conductance methods. It is found that the charge injection and accumulation at the FE/DE interface play a key role in the operation of FE/DE stack. These enormous trapped charges of 1013-1014 cm-2 at the FE/DE interface are supplied from the leakage current through the ultrathin DE layer. The proposed multi-probe measurement techniques provide a comprehensive understanding of FE/DE stack. The demonstrated leakage-assist polarization switching provides the new insights on the understanding of negative-capacitance (NC) effect and ferroelectric device performance.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"40 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Probe Characterization of Ferroelectric/Dielectric Interface by C-V, P-V and Conductance Methods
In this work, we report on the multi-probe characterization of interfacial charges at the ferroelectric/dielectric (FE/DE) interface in response to both large-signal measurement associated with polarization switching and small-signal measurement without polarization switching. Charge densities at the FE/DE interface are extracted from temperature dependent C-V, P-V, conductance methods. It is found that the charge injection and accumulation at the FE/DE interface play a key role in the operation of FE/DE stack. These enormous trapped charges of 1013-1014 cm-2 at the FE/DE interface are supplied from the leakage current through the ultrathin DE layer. The proposed multi-probe measurement techniques provide a comprehensive understanding of FE/DE stack. The demonstrated leakage-assist polarization switching provides the new insights on the understanding of negative-capacitance (NC) effect and ferroelectric device performance.