非同构群上的Cayley图的两个族

Joy Morris, Joško Smolčić
{"title":"非同构群上的Cayley图的两个族","authors":"Joy Morris, Joško Smolčić","doi":"10.13069/JACODESMATH.867644","DOIUrl":null,"url":null,"abstract":"A number of authors have studied the question of when a graph can be represented as a Cayley graph on more than one nonisomorphic group. The work to date has focussed on a few special situations: when the groups are $p$-groups; when the groups have order $pq$; when the Cayley graphs are normal; or when the groups are both abelian. In this paper, we construct two infinite families of graphs, each of which is Cayley on an abelian group and a nonabelian group. These families include the smallest examples of such graphs that had not appeared in other results.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two families of graphs that are Cayley on nonisomorphic groups\",\"authors\":\"Joy Morris, Joško Smolčić\",\"doi\":\"10.13069/JACODESMATH.867644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of authors have studied the question of when a graph can be represented as a Cayley graph on more than one nonisomorphic group. The work to date has focussed on a few special situations: when the groups are $p$-groups; when the groups have order $pq$; when the Cayley graphs are normal; or when the groups are both abelian. In this paper, we construct two infinite families of graphs, each of which is Cayley on an abelian group and a nonabelian group. These families include the smallest examples of such graphs that had not appeared in other results.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.867644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.867644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多作者研究了一个图何时可以在多个非同构群上表示为Cayley图的问题。迄今为止的工作主要集中在几种特殊情况下:当组是$p$-组时;当群的阶为$pq$;当Cayley图为正态时;或者当两个组都是阿贝尔时。本文构造了两个无限族图,每一个族图都是在一个阿贝尔群和一个非阿贝尔群上的Cayley。这些族包括在其他结果中没有出现的此类图的最小示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two families of graphs that are Cayley on nonisomorphic groups
A number of authors have studied the question of when a graph can be represented as a Cayley graph on more than one nonisomorphic group. The work to date has focussed on a few special situations: when the groups are $p$-groups; when the groups have order $pq$; when the Cayley graphs are normal; or when the groups are both abelian. In this paper, we construct two infinite families of graphs, each of which is Cayley on an abelian group and a nonabelian group. These families include the smallest examples of such graphs that had not appeared in other results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信