{"title":"mri引导手术机器人用塑料封装谐振式超声压电驱动器的演示与实验验证。","authors":"P. Carvalho, K. Gandomi, C. Nycz, G. Fischer","doi":"10.1115/IMECE2018-87963","DOIUrl":null,"url":null,"abstract":"Intra-operative medical imaging based on magnetic resonance imaging (MRI) coupled with robotic manipulation of surgical instruments enables precise feedback-driven procedures. Electrically powered non-ferromagnetic motors based on piezoelectric elements have shown to be well suited for MRI robots. However, even avoiding ferrous materials, the high metal content on commercially available motors still cause distortions to the magnetic fields. We construct semi-custom piezoelectric actuators wherein the quantity of conductive material is minimized and demonstrate that the distortion issues can be partly addressed through substituting several of these components for plastic equivalents, while maintaining motor functionality. Distortion was measured by assessing the RMS change in position of 49 centroid points in a 12.5mm square grid of a gelatin-filled phantom. The metal motor caused a distortion of up to 4.91mm versus 0.55mm for the plastic motor. An additional SNR drop between motor off and motor spinning of approximately 20% was not statistically different for metal versus plastic (p=0.36).","PeriodicalId":73488,"journal":{"name":"International Mechanical Engineering Congress and Exposition : [proceedings]. International Mechanical Engineering Congress and Exposition","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DEMONSTRATION AND EXPERIMENTAL VALIDATION OF PLASTIC-ENCASED RESONANT ULTRASONIC PIEZOELECTRIC ACTUATOR FOR MRI-GUIDED SURGICAL ROBOTS.\",\"authors\":\"P. Carvalho, K. Gandomi, C. Nycz, G. Fischer\",\"doi\":\"10.1115/IMECE2018-87963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intra-operative medical imaging based on magnetic resonance imaging (MRI) coupled with robotic manipulation of surgical instruments enables precise feedback-driven procedures. Electrically powered non-ferromagnetic motors based on piezoelectric elements have shown to be well suited for MRI robots. However, even avoiding ferrous materials, the high metal content on commercially available motors still cause distortions to the magnetic fields. We construct semi-custom piezoelectric actuators wherein the quantity of conductive material is minimized and demonstrate that the distortion issues can be partly addressed through substituting several of these components for plastic equivalents, while maintaining motor functionality. Distortion was measured by assessing the RMS change in position of 49 centroid points in a 12.5mm square grid of a gelatin-filled phantom. The metal motor caused a distortion of up to 4.91mm versus 0.55mm for the plastic motor. An additional SNR drop between motor off and motor spinning of approximately 20% was not statistically different for metal versus plastic (p=0.36).\",\"PeriodicalId\":73488,\"journal\":{\"name\":\"International Mechanical Engineering Congress and Exposition : [proceedings]. International Mechanical Engineering Congress and Exposition\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mechanical Engineering Congress and Exposition : [proceedings]. International Mechanical Engineering Congress and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mechanical Engineering Congress and Exposition : [proceedings]. International Mechanical Engineering Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DEMONSTRATION AND EXPERIMENTAL VALIDATION OF PLASTIC-ENCASED RESONANT ULTRASONIC PIEZOELECTRIC ACTUATOR FOR MRI-GUIDED SURGICAL ROBOTS.
Intra-operative medical imaging based on magnetic resonance imaging (MRI) coupled with robotic manipulation of surgical instruments enables precise feedback-driven procedures. Electrically powered non-ferromagnetic motors based on piezoelectric elements have shown to be well suited for MRI robots. However, even avoiding ferrous materials, the high metal content on commercially available motors still cause distortions to the magnetic fields. We construct semi-custom piezoelectric actuators wherein the quantity of conductive material is minimized and demonstrate that the distortion issues can be partly addressed through substituting several of these components for plastic equivalents, while maintaining motor functionality. Distortion was measured by assessing the RMS change in position of 49 centroid points in a 12.5mm square grid of a gelatin-filled phantom. The metal motor caused a distortion of up to 4.91mm versus 0.55mm for the plastic motor. An additional SNR drop between motor off and motor spinning of approximately 20% was not statistically different for metal versus plastic (p=0.36).