化学磨损:锆石溶解的机理

IF 2.7 Q2 GEOCHEMISTRY & GEOPHYSICS
A. McKanna, Isabel Koran, B. Schoene, R. Ketcham
{"title":"化学磨损:锆石溶解的机理","authors":"A. McKanna, Isabel Koran, B. Schoene, R. Ketcham","doi":"10.5194/gchron-5-127-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Chemical abrasion is a technique that combines thermal annealing and partial\ndissolution in hydrofluoric acid (HF) to selectively remove\nradiation-damaged portions of zircon crystals prior to U–Pb isotopic\nanalysis, and it is applied ubiquitously to zircon prior to U–Pb isotope\ndilution thermal ionization mass spectrometry (ID-TIMS). The mechanics of\nzircon dissolution in HF and the impact of different leaching conditions on\nthe zircon structure, however, are poorly resolved. We present a\nmicrostructural investigation that integrates microscale X-ray computed\ntomography (µCT), scanning electron microscopy, and Raman\nspectroscopy to evaluate zircon dissolution in HF. We show that µCT\nis an effective tool for imaging metamictization and complex dissolution\nnetworks in three dimensions. Acid frequently reaches crystal interiors via\nfractures spatially associated with radiation damage zoning and inclusions\nto dissolve soluble high-U zones, some inclusions, and material around\nfractures, leaving behind a more crystalline zircon residue. Other acid paths\nto crystal cores include the dissolution of surface-reaching inclusions and\nthe percolation of acid across zones with high defect densities. In highly\ncrystalline samples dissolution is crystallographically controlled with\ndissolution proceeding almost exclusively along the c axis. Increasing the\nleaching temperature from 180 to 210 ∘C results in\ndeeper etching textures, wider acid paths, more complex internal dissolution\nnetworks, and greater volume losses. How a grain dissolves strongly depends\non its initial radiation damage content and defect distribution as well as\nthe size and position of inclusions. As such, the effectiveness of any\nchemical abrasion protocol for ID-TIMS U–Pb geochronology is likely\nsample-dependent. We also briefly discuss the implications of our findings\nfor deep-time (U-Th)/He thermochronology.\n","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":"106 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Chemical abrasion: the mechanics of zircon dissolution\",\"authors\":\"A. McKanna, Isabel Koran, B. Schoene, R. Ketcham\",\"doi\":\"10.5194/gchron-5-127-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Chemical abrasion is a technique that combines thermal annealing and partial\\ndissolution in hydrofluoric acid (HF) to selectively remove\\nradiation-damaged portions of zircon crystals prior to U–Pb isotopic\\nanalysis, and it is applied ubiquitously to zircon prior to U–Pb isotope\\ndilution thermal ionization mass spectrometry (ID-TIMS). The mechanics of\\nzircon dissolution in HF and the impact of different leaching conditions on\\nthe zircon structure, however, are poorly resolved. We present a\\nmicrostructural investigation that integrates microscale X-ray computed\\ntomography (µCT), scanning electron microscopy, and Raman\\nspectroscopy to evaluate zircon dissolution in HF. We show that µCT\\nis an effective tool for imaging metamictization and complex dissolution\\nnetworks in three dimensions. Acid frequently reaches crystal interiors via\\nfractures spatially associated with radiation damage zoning and inclusions\\nto dissolve soluble high-U zones, some inclusions, and material around\\nfractures, leaving behind a more crystalline zircon residue. Other acid paths\\nto crystal cores include the dissolution of surface-reaching inclusions and\\nthe percolation of acid across zones with high defect densities. In highly\\ncrystalline samples dissolution is crystallographically controlled with\\ndissolution proceeding almost exclusively along the c axis. Increasing the\\nleaching temperature from 180 to 210 ∘C results in\\ndeeper etching textures, wider acid paths, more complex internal dissolution\\nnetworks, and greater volume losses. How a grain dissolves strongly depends\\non its initial radiation damage content and defect distribution as well as\\nthe size and position of inclusions. As such, the effectiveness of any\\nchemical abrasion protocol for ID-TIMS U–Pb geochronology is likely\\nsample-dependent. We also briefly discuss the implications of our findings\\nfor deep-time (U-Th)/He thermochronology.\\n\",\"PeriodicalId\":12723,\"journal\":{\"name\":\"Geochronology\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochronology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/gchron-5-127-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gchron-5-127-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要化学磨损是一种结合热退火和氢氟酸(HF)部分溶解的技术,在U-Pb同位素分析之前选择性地去除锆石晶体中辐射损伤的部分,在U-Pb同位素稀释热电离质谱分析(ID-TIMS)之前普遍应用于锆石。然而,对于HF中锆石的溶解机理以及不同浸出条件对锆石结构的影响,目前还没有得到很好的解决。我们提出了一项显微结构研究,结合了微尺度x射线计算机断层扫描(µCT),扫描电子显微镜和拉曼光谱来评估HF中的锆石溶解。我们发现µCTis是三维成像元化和复杂溶解网络的有效工具。酸经常到达与辐射损伤分区和包裹体相关的裂缝晶体内部,溶解可溶性高u带,一些包裹体和裂缝周围的物质,留下更结晶的锆石残留物。其他酸途径包括到达表面的包裹体的溶解和酸在高缺陷密度区域的渗透。在高结晶样品中,溶解受晶体学控制,溶解过程几乎完全沿着c轴进行。将浸出温度从180°C增加到210°C,会造成更深的蚀刻纹理、更宽的酸路、更复杂的内部溶解网络和更大的体积损失。晶粒的溶解程度取决于其初始辐射损伤含量、缺陷分布以及夹杂物的大小和位置。因此,任何用于ID-TIMS U-Pb地质年代学的化学磨损方案的有效性都可能取决于样品。我们还简要讨论了我们的发现对深时(U-Th)/He热年代学的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical abrasion: the mechanics of zircon dissolution
Abstract. Chemical abrasion is a technique that combines thermal annealing and partial dissolution in hydrofluoric acid (HF) to selectively remove radiation-damaged portions of zircon crystals prior to U–Pb isotopic analysis, and it is applied ubiquitously to zircon prior to U–Pb isotope dilution thermal ionization mass spectrometry (ID-TIMS). The mechanics of zircon dissolution in HF and the impact of different leaching conditions on the zircon structure, however, are poorly resolved. We present a microstructural investigation that integrates microscale X-ray computed tomography (µCT), scanning electron microscopy, and Raman spectroscopy to evaluate zircon dissolution in HF. We show that µCT is an effective tool for imaging metamictization and complex dissolution networks in three dimensions. Acid frequently reaches crystal interiors via fractures spatially associated with radiation damage zoning and inclusions to dissolve soluble high-U zones, some inclusions, and material around fractures, leaving behind a more crystalline zircon residue. Other acid paths to crystal cores include the dissolution of surface-reaching inclusions and the percolation of acid across zones with high defect densities. In highly crystalline samples dissolution is crystallographically controlled with dissolution proceeding almost exclusively along the c axis. Increasing the leaching temperature from 180 to 210 ∘C results in deeper etching textures, wider acid paths, more complex internal dissolution networks, and greater volume losses. How a grain dissolves strongly depends on its initial radiation damage content and defect distribution as well as the size and position of inclusions. As such, the effectiveness of any chemical abrasion protocol for ID-TIMS U–Pb geochronology is likely sample-dependent. We also briefly discuss the implications of our findings for deep-time (U-Th)/He thermochronology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochronology
Geochronology Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
0.00%
发文量
35
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信