大型非线性方程组的两步对角牛顿法

M. Y. Waziri, W. Leong, M. A. Hassan, M. Monsi
{"title":"大型非线性方程组的两步对角牛顿法","authors":"M. Y. Waziri, W. Leong, M. A. Hassan, M. Monsi","doi":"10.1109/ICMSAO.2011.5775576","DOIUrl":null,"url":null,"abstract":"We propose some improvements on a diagonal Newton's method for solving large-scale systems of nonlinear equations. In this approach, we use data from two preceding steps to improve the current approximate Jacobian in diagonal form. Via this approach, we can achieve a higher order of accuracy for Jacobian approximation when compares to other existing diagonal-type Newton's method. The results of our numerical tests, demonstrate a clear enhancement in numerical performance of our proposed method","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-step diagonal Newton method for large-scale systems of nonlinear equations\",\"authors\":\"M. Y. Waziri, W. Leong, M. A. Hassan, M. Monsi\",\"doi\":\"10.1109/ICMSAO.2011.5775576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose some improvements on a diagonal Newton's method for solving large-scale systems of nonlinear equations. In this approach, we use data from two preceding steps to improve the current approximate Jacobian in diagonal form. Via this approach, we can achieve a higher order of accuracy for Jacobian approximation when compares to other existing diagonal-type Newton's method. The results of our numerical tests, demonstrate a clear enhancement in numerical performance of our proposed method\",\"PeriodicalId\":6383,\"journal\":{\"name\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSAO.2011.5775576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对求解大型非线性方程组的对角线牛顿法进行了改进。在这种方法中,我们使用前两步的数据来改进当前的对角线形式的近似雅可比矩阵。通过这种方法,与现有的其他对角线型牛顿法相比,我们可以获得更高阶的雅可比逼近精度。我们的数值测试结果表明,我们提出的方法在数值性能上有明显的提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-step diagonal Newton method for large-scale systems of nonlinear equations
We propose some improvements on a diagonal Newton's method for solving large-scale systems of nonlinear equations. In this approach, we use data from two preceding steps to improve the current approximate Jacobian in diagonal form. Via this approach, we can achieve a higher order of accuracy for Jacobian approximation when compares to other existing diagonal-type Newton's method. The results of our numerical tests, demonstrate a clear enhancement in numerical performance of our proposed method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信