网络管理中关联规则的快速挖掘算法

Peiqi Liu, Zeng-zhi Li, Yu-Xi Chen, Yinliang Zhao
{"title":"网络管理中关联规则的快速挖掘算法","authors":"Peiqi Liu, Zeng-zhi Li, Yu-Xi Chen, Yinliang Zhao","doi":"10.1109/ICMLC.2002.1174516","DOIUrl":null,"url":null,"abstract":"This paper presents the present study and research of knowledge discovery in database, points out the shortcoming of the classical a priori algorithm. Our research proposes the AprioriNEW algorithm based on reducing database, and analyses and appraises this algorithm in progress. The algorithm has been applied to mine the trap information in the network management.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"4 1","pages":"915-918 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast algorithm of mining association rules in network management\",\"authors\":\"Peiqi Liu, Zeng-zhi Li, Yu-Xi Chen, Yinliang Zhao\",\"doi\":\"10.1109/ICMLC.2002.1174516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the present study and research of knowledge discovery in database, points out the shortcoming of the classical a priori algorithm. Our research proposes the AprioriNEW algorithm based on reducing database, and analyses and appraises this algorithm in progress. The algorithm has been applied to mine the trap information in the network management.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"4 1\",\"pages\":\"915-918 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1174516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1174516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了数据库中知识发现的研究现状,指出了经典先验算法的不足。本研究提出了基于约简数据库的AprioriNEW算法,并对该算法进行了分析和评价。该算法已应用于网络管理中trap信息的挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast algorithm of mining association rules in network management
This paper presents the present study and research of knowledge discovery in database, points out the shortcoming of the classical a priori algorithm. Our research proposes the AprioriNEW algorithm based on reducing database, and analyses and appraises this algorithm in progress. The algorithm has been applied to mine the trap information in the network management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信