高压缩性合成二元铱-钌和三元铱-锇-钌矿物的类似物

K. Yusenko, S. Martynova, S. Khandarkhaeva, T. Fedotenko, K. Glazyrin, E. Koemets, M. Bykov, M. Hanfland, K. Siemensmeyer, A. Smekhova, S. Gromilov, L. Dubrovinsky
{"title":"高压缩性合成二元铱-钌和三元铱-锇-钌矿物的类似物","authors":"K. Yusenko, S. Martynova, S. Khandarkhaeva, T. Fedotenko, K. Glazyrin, E. Koemets, M. Bykov, M. Hanfland, K. Siemensmeyer, A. Smekhova, S. Gromilov, L. Dubrovinsky","doi":"10.2139/ssrn.3685881","DOIUrl":null,"url":null,"abstract":"<i>Hcp</i>–Ir<sub>0.24</sub>Ru<sub>0.36</sub>Os<sub>0.40</sub> and <i>fcc</i>–Ir<sub>0.84</sub>Ru<sub>0.06</sub>Os<sub>0.10</sub> ternary alloys as well as binary <i>hcp</i>–Ir<sub>0.33</sub>Ru<sub>0.67</sub> and <i>fcc</i>–Ir<sub>0.75</sub>Ru<sub>0.25</sub> alloys were prepared using thermal decomposition of [Ir<sub>x</sub>Ru<sub>1-x</sub>(NH<sub>3</sub>)<sub>5</sub>Cl][Os<sub>y</sub>Ir<sub>(1-y)</sub>Cl6] single-source precursors in hydrogen flow below 1070 K. These single-phase alloys correspond to ternary and binary peritectic phase diagrams and can be used as synthetic models for rare iridosmine minerals. Thermal decomposition of parent bimetallic precursor [Ir(NH<sub>3</sub>)<sub>5</sub>Cl][OsСl<sub>6</sub>] has been investigated using <i>in situ</i> powder X-ray diffraction in inert and reductive atmospheres. In reductive atmosphere, [Ir(NH<sub>3</sub>)<sub>5</sub>Cl][OsСl<sub>6</sub>] forms (NH<sub>4</sub>)<sub>2</sub>[OsСl<sub>6&lt;</sub>] as crystalline intermediate; Ir from its cationic part is reduced by hydrogen with a formation of defect <i>fcc</i> -structured metallic particles; the final product is a metastable <i>hcp</i> I.0.5Os<sub>0.5</sub> alloy. In inert atmosphere, the salt decomposes at higher temperature without a formation of any detectable crystalline intermediates; two-phase <i>fcc+hcp</i> mixture forms directly above 800 K. Room temperature compressibility up to 50 GPa has been studied for all prepared alloys in diamond anvil cells. <i>Hcp</i>–Ir<sub>0.24</sub>Ru<sub>0.36</sub>Os<sub>0.40</sub> (B0 = 362(4) GPa, B0' = 4.8(2)) and <i>fcc</i>–Ir<sub>0.84</sub>Ru<sub>0.06</sub>Os<sub>0.10</sub> (B0 = 302(7) GPa, B0' = 6.4(5)) ternary alloys as well as <i>hcp</i>–Ir<sub>0.33</sub>Ru<sub>0.67</sub> (B0 = 332(2) GPa, B0' = 5.4(1)) and <i>fcc</i>–Ir<sub>0.75</sub>Ru<sub>0.25</sub> (B0 = 316(1) GPa, B0' = 5.1(1)) binary alloys do not show any phase transitions upon compression at room temperature. In contrast with other investigated ultra incompressible refractory alloys with osmium and iridium, <i>hcp</i>–Ir<sub>0.33</sub>Ru","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Compressibility of Synthetic Analogous of Binary Iridium–Ruthenium and Ternaryiridium–Osmium–Ruthenium Minerals\",\"authors\":\"K. Yusenko, S. Martynova, S. Khandarkhaeva, T. Fedotenko, K. Glazyrin, E. Koemets, M. Bykov, M. Hanfland, K. Siemensmeyer, A. Smekhova, S. Gromilov, L. Dubrovinsky\",\"doi\":\"10.2139/ssrn.3685881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Hcp</i>–Ir<sub>0.24</sub>Ru<sub>0.36</sub>Os<sub>0.40</sub> and <i>fcc</i>–Ir<sub>0.84</sub>Ru<sub>0.06</sub>Os<sub>0.10</sub> ternary alloys as well as binary <i>hcp</i>–Ir<sub>0.33</sub>Ru<sub>0.67</sub> and <i>fcc</i>–Ir<sub>0.75</sub>Ru<sub>0.25</sub> alloys were prepared using thermal decomposition of [Ir<sub>x</sub>Ru<sub>1-x</sub>(NH<sub>3</sub>)<sub>5</sub>Cl][Os<sub>y</sub>Ir<sub>(1-y)</sub>Cl6] single-source precursors in hydrogen flow below 1070 K. These single-phase alloys correspond to ternary and binary peritectic phase diagrams and can be used as synthetic models for rare iridosmine minerals. Thermal decomposition of parent bimetallic precursor [Ir(NH<sub>3</sub>)<sub>5</sub>Cl][OsСl<sub>6</sub>] has been investigated using <i>in situ</i> powder X-ray diffraction in inert and reductive atmospheres. In reductive atmosphere, [Ir(NH<sub>3</sub>)<sub>5</sub>Cl][OsСl<sub>6</sub>] forms (NH<sub>4</sub>)<sub>2</sub>[OsСl<sub>6&lt;</sub>] as crystalline intermediate; Ir from its cationic part is reduced by hydrogen with a formation of defect <i>fcc</i> -structured metallic particles; the final product is a metastable <i>hcp</i> I.0.5Os<sub>0.5</sub> alloy. In inert atmosphere, the salt decomposes at higher temperature without a formation of any detectable crystalline intermediates; two-phase <i>fcc+hcp</i> mixture forms directly above 800 K. Room temperature compressibility up to 50 GPa has been studied for all prepared alloys in diamond anvil cells. <i>Hcp</i>–Ir<sub>0.24</sub>Ru<sub>0.36</sub>Os<sub>0.40</sub> (B0 = 362(4) GPa, B0' = 4.8(2)) and <i>fcc</i>–Ir<sub>0.84</sub>Ru<sub>0.06</sub>Os<sub>0.10</sub> (B0 = 302(7) GPa, B0' = 6.4(5)) ternary alloys as well as <i>hcp</i>–Ir<sub>0.33</sub>Ru<sub>0.67</sub> (B0 = 332(2) GPa, B0' = 5.4(1)) and <i>fcc</i>–Ir<sub>0.75</sub>Ru<sub>0.25</sub> (B0 = 316(1) GPa, B0' = 5.1(1)) binary alloys do not show any phase transitions upon compression at room temperature. In contrast with other investigated ultra incompressible refractory alloys with osmium and iridium, <i>hcp</i>–Ir<sub>0.33</sub>Ru\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3685881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3685881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用[IrxRu1-x(NH3)5Cl][OsyIr(1-y)Cl6]单源前驱体在1070 K以下氢气流中热分解制备了Hcp-Ir0.24Ru0.36Os0.40和fcc - ir0.84 ru0.060 os0.10三元合金以及hcp-Ir0.33Ru0.67和fcc-Ir0.75Ru0.25二元合金。这些单相合金对应三元和二元包晶相图,可作为稀有铱胺矿物的合成模型。用原位粉末x射线衍射研究了母体双金属前驱体[Ir(NH3)5Cl][OsСl6]在惰性和还原气氛下的热分解。在还原气氛中,[Ir(NH3)5Cl][OsСl6]形成(NH4)2[OsСl6<]其阳离子部分的Ir被氢还原,形成缺陷fcc结构的金属颗粒;最终产物是亚稳的hcp I.0.5Os0.5合金。在惰性气氛中,盐在较高的温度下分解而不形成任何可检测的结晶中间体;两相fcc+hcp混合物直接在800k以上形成。研究了所有合金在金刚石砧细胞中的室温压缩性高达50 GPa。Hcp-Ir0.24Ru0.36Os0.40 (B0 = 362(4) GPa, B0′= 4.8(2))和fcc - ir0.84 ru0.060 os0.10 (B0 = 302(7) GPa, B0′= 6.4(5))三元合金以及hcp-Ir0.33Ru0.67 (B0 = 332(2) GPa, B0′= 5.4(1))和fcc-Ir0.75Ru0.25 (B0 = 316(1) GPa, B0′= 5.1(1))二元合金在室温压缩时均未表现出任何相变。与其他已研究的锇铱超不可压缩耐火合金相比,hcp-Ir0.33Ru
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Compressibility of Synthetic Analogous of Binary Iridium–Ruthenium and Ternaryiridium–Osmium–Ruthenium Minerals
Hcp–Ir0.24Ru0.36Os0.40 and fcc–Ir0.84Ru0.06Os0.10 ternary alloys as well as binary hcp–Ir0.33Ru0.67 and fcc–Ir0.75Ru0.25 alloys were prepared using thermal decomposition of [IrxRu1-x(NH3)5Cl][OsyIr(1-y)Cl6] single-source precursors in hydrogen flow below 1070 K. These single-phase alloys correspond to ternary and binary peritectic phase diagrams and can be used as synthetic models for rare iridosmine minerals. Thermal decomposition of parent bimetallic precursor [Ir(NH3)5Cl][OsСl6] has been investigated using in situ powder X-ray diffraction in inert and reductive atmospheres. In reductive atmosphere, [Ir(NH3)5Cl][OsСl6] forms (NH4)2[OsСl6<] as crystalline intermediate; Ir from its cationic part is reduced by hydrogen with a formation of defect fcc -structured metallic particles; the final product is a metastable hcp I.0.5Os0.5 alloy. In inert atmosphere, the salt decomposes at higher temperature without a formation of any detectable crystalline intermediates; two-phase fcc+hcp mixture forms directly above 800 K. Room temperature compressibility up to 50 GPa has been studied for all prepared alloys in diamond anvil cells. Hcp–Ir0.24Ru0.36Os0.40 (B0 = 362(4) GPa, B0' = 4.8(2)) and fcc–Ir0.84Ru0.06Os0.10 (B0 = 302(7) GPa, B0' = 6.4(5)) ternary alloys as well as hcp–Ir0.33Ru0.67 (B0 = 332(2) GPa, B0' = 5.4(1)) and fcc–Ir0.75Ru0.25 (B0 = 316(1) GPa, B0' = 5.1(1)) binary alloys do not show any phase transitions upon compression at room temperature. In contrast with other investigated ultra incompressible refractory alloys with osmium and iridium, hcp–Ir0.33Ru
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信