用于喷气无人机控制的滑模校正器

X. Wang
{"title":"用于喷气无人机控制的滑模校正器","authors":"X. Wang","doi":"10.1017/aer.2023.29","DOIUrl":null,"url":null,"abstract":"\n A sliding mode corrector is presented for disturbance rejection in position sensing using relatively accurate velocity measurement. The corrector design is based on a robust second-order sliding mode (2-sliding mode), which makes the fusion of position and velocity on a sliding surface to reject disturbance. Even when the frequency bands of disturbance and actual position signal overlap, or large-magnitude disturbance exists, the corrector can still provide the accurate and smoothed estimate of position. The proposed corrector is applied to a jet UAV navigation and control. In the unmanned aerial vehicle (UAV) system, the disturbances exist in position and attitude measurements, and the uncertainties exist in the system dynamics. For the UAV trajectory tracking control, the system model is constructed in the earth-fixed frame, and the constructed model is fit for observer design to estimate system uncertainties. The control laws are designed according to the correction of position and attitude by the correctors and the estimation of system uncertainties by an existing observer. Finally, the flight experiment demonstrates the effectiveness of the proposed method.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding mode corrector for jet UAV control\",\"authors\":\"X. Wang\",\"doi\":\"10.1017/aer.2023.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A sliding mode corrector is presented for disturbance rejection in position sensing using relatively accurate velocity measurement. The corrector design is based on a robust second-order sliding mode (2-sliding mode), which makes the fusion of position and velocity on a sliding surface to reject disturbance. Even when the frequency bands of disturbance and actual position signal overlap, or large-magnitude disturbance exists, the corrector can still provide the accurate and smoothed estimate of position. The proposed corrector is applied to a jet UAV navigation and control. In the unmanned aerial vehicle (UAV) system, the disturbances exist in position and attitude measurements, and the uncertainties exist in the system dynamics. For the UAV trajectory tracking control, the system model is constructed in the earth-fixed frame, and the constructed model is fit for observer design to estimate system uncertainties. The control laws are designed according to the correction of position and attitude by the correctors and the estimation of system uncertainties by an existing observer. Finally, the flight experiment demonstrates the effectiveness of the proposed method.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"211 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2023.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用相对精确的速度测量来抑制位置传感干扰的滑模校正器。校正器的设计基于鲁棒二阶滑模(2-滑模),使位置和速度在滑动面上融合以抑制干扰。即使在干扰信号频带与实际位置信号频带重叠或存在大幅度干扰的情况下,该校正器仍能提供精确的、平滑的位置估计。将该修正器应用于某型喷气无人机的导航控制。在无人飞行器(UAV)系统中,位置和姿态测量存在扰动,系统动力学存在不确定性。针对无人机的轨迹跟踪控制,在地固定框架下建立了系统模型,所建立的模型适合观测器设计来估计系统的不确定性。根据修正器对位置和姿态的修正以及现有观测器对系统不确定性的估计来设计控制律。最后,通过飞行实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding mode corrector for jet UAV control
A sliding mode corrector is presented for disturbance rejection in position sensing using relatively accurate velocity measurement. The corrector design is based on a robust second-order sliding mode (2-sliding mode), which makes the fusion of position and velocity on a sliding surface to reject disturbance. Even when the frequency bands of disturbance and actual position signal overlap, or large-magnitude disturbance exists, the corrector can still provide the accurate and smoothed estimate of position. The proposed corrector is applied to a jet UAV navigation and control. In the unmanned aerial vehicle (UAV) system, the disturbances exist in position and attitude measurements, and the uncertainties exist in the system dynamics. For the UAV trajectory tracking control, the system model is constructed in the earth-fixed frame, and the constructed model is fit for observer design to estimate system uncertainties. The control laws are designed according to the correction of position and attitude by the correctors and the estimation of system uncertainties by an existing observer. Finally, the flight experiment demonstrates the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信