公司债券的最佳投资

Shibo Bian , Hailong Liu
{"title":"公司债券的最佳投资","authors":"Shibo Bian ,&nbsp;Hailong Liu","doi":"10.1016/j.mcm.2012.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper analyzes the optimal investment strategy in a corporate (defaultable) bond, a stock and a bank account in a continuous time model. We model the corporate bond price through a reduced-form approach and solve the dynamics of its price. The optimal investment process will be worked out first with a general risk-averse utility function, and then an optimal strategy with CARA utility will be presented using martingale methods. The optimal investment strategy is analyzed numerically for the CARA utility.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 9","pages":"Pages 1615-1624"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2012.05.001","citationCount":"2","resultStr":"{\"title\":\"Optimal investment with a corporate bond\",\"authors\":\"Shibo Bian ,&nbsp;Hailong Liu\",\"doi\":\"10.1016/j.mcm.2012.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper analyzes the optimal investment strategy in a corporate (defaultable) bond, a stock and a bank account in a continuous time model. We model the corporate bond price through a reduced-form approach and solve the dynamics of its price. The optimal investment process will be worked out first with a general risk-averse utility function, and then an optimal strategy with CARA utility will be presented using martingale methods. The optimal investment strategy is analyzed numerically for the CARA utility.</p></div>\",\"PeriodicalId\":49872,\"journal\":{\"name\":\"Mathematical and Computer Modelling\",\"volume\":\"58 9\",\"pages\":\"Pages 1615-1624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mcm.2012.05.001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089571771200101X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089571771200101X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了连续时间模型下公司(违约)债券、股票和银行账户的最优投资策略。我们通过简化形式的方法对公司债券的价格进行建模,并求解其价格的动态性。首先用一般风险厌恶效用函数求解最优投资过程,然后用鞅方法给出具有CARA效用的最优投资策略。对CARA效用的最优投资策略进行了数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal investment with a corporate bond

The present paper analyzes the optimal investment strategy in a corporate (defaultable) bond, a stock and a bank account in a continuous time model. We model the corporate bond price through a reduced-form approach and solve the dynamics of its price. The optimal investment process will be worked out first with a general risk-averse utility function, and then an optimal strategy with CARA utility will be presented using martingale methods. The optimal investment strategy is analyzed numerically for the CARA utility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信