拓扑基本群:布朗$^{^,}$s拓扑

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Pakdaman, Fereshteh Shahi̇ni̇
{"title":"拓扑基本群:布朗$^{^,}$s拓扑","authors":"A. Pakdaman, Fereshteh Shahi̇ni̇","doi":"10.15672/hujms.1205441","DOIUrl":null,"url":null,"abstract":"‎In this paper‎, ‎we generalize the Brown$^{^,}$s topology on the fundamental groupoids‎. ‎For a locally path connected space $X$ and a totally disconnected normal subgroupoid‎ ‎$M$‎ ‎of‎ ‎$\\pi X$‎, ‎we define a topology on the quotient groupoid‎ ‎$\\dfrac{\\pi X}{M}$‎ ‎which is a generalization of what introduced by Brown for locally path connected and semilocally simply connected spaces‎. ‎We prove that‎ ‎$\\dfrac{\\pi X}{M}$‎ ‎equipped with this topology is a topological groupoid‎. ‎Also‎, ‎we will find a class of subgroupoids of topological groupoids whose their related quotient groupoids will be topological groupoids‎. ‎By using this‎, ‎we show that our topology on‎ ‎$\\dfrac{\\pi X}{M}$ is equivalent to the quotient of the Lasso topology on the topological fundamental groupoids‎, ‎$\\dfrac{\\pi^L X}{M}$ \\cite{PS}‎.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"22 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Fundamental Groupoids‎: ‎Brown$^{^,}$s Topology\",\"authors\":\"A. Pakdaman, Fereshteh Shahi̇ni̇\",\"doi\":\"10.15672/hujms.1205441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎In this paper‎, ‎we generalize the Brown$^{^,}$s topology on the fundamental groupoids‎. ‎For a locally path connected space $X$ and a totally disconnected normal subgroupoid‎ ‎$M$‎ ‎of‎ ‎$\\\\pi X$‎, ‎we define a topology on the quotient groupoid‎ ‎$\\\\dfrac{\\\\pi X}{M}$‎ ‎which is a generalization of what introduced by Brown for locally path connected and semilocally simply connected spaces‎. ‎We prove that‎ ‎$\\\\dfrac{\\\\pi X}{M}$‎ ‎equipped with this topology is a topological groupoid‎. ‎Also‎, ‎we will find a class of subgroupoids of topological groupoids whose their related quotient groupoids will be topological groupoids‎. ‎By using this‎, ‎we show that our topology on‎ ‎$\\\\dfrac{\\\\pi X}{M}$ is equivalent to the quotient of the Lasso topology on the topological fundamental groupoids‎, ‎$\\\\dfrac{\\\\pi^L X}{M}$ \\\\cite{PS}‎.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1205441\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1205441","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们推广了布朗定律$^{^,}$基本群类群上的S拓扑。对于本地路径连接的空间 $X$ 和一个完全不连接的正规子群$M$…的$\pi X$我们在商群上定义了一个拓扑$\dfrac{\pi X}{M}$这是Brown对局部路径连通和半局部单连通空间的推广。我们证明了这一点$\dfrac{\pi X}{M}$配备此拓扑的是拓扑群。同时,我们将找到一类拓扑群的子群,它们的相关商群是拓扑群。通过使用这个,我们证明了我们的拓扑在$\dfrac{\pi X}{M}$ 等价于拓扑基本群上的Lasso拓扑的商,$\dfrac{\pi^L X}{M}$ \cite{PS}…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Fundamental Groupoids‎: ‎Brown$^{^,}$s Topology
‎In this paper‎, ‎we generalize the Brown$^{^,}$s topology on the fundamental groupoids‎. ‎For a locally path connected space $X$ and a totally disconnected normal subgroupoid‎ ‎$M$‎ ‎of‎ ‎$\pi X$‎, ‎we define a topology on the quotient groupoid‎ ‎$\dfrac{\pi X}{M}$‎ ‎which is a generalization of what introduced by Brown for locally path connected and semilocally simply connected spaces‎. ‎We prove that‎ ‎$\dfrac{\pi X}{M}$‎ ‎equipped with this topology is a topological groupoid‎. ‎Also‎, ‎we will find a class of subgroupoids of topological groupoids whose their related quotient groupoids will be topological groupoids‎. ‎By using this‎, ‎we show that our topology on‎ ‎$\dfrac{\pi X}{M}$ is equivalent to the quotient of the Lasso topology on the topological fundamental groupoids‎, ‎$\dfrac{\pi^L X}{M}$ \cite{PS}‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信