离散小波变换的简单并行结构

S. Chang, M. Lee, J. Cha
{"title":"离散小波变换的简单并行结构","authors":"S. Chang, M. Lee, J. Cha","doi":"10.1109/ISCAS.1997.621571","DOIUrl":null,"url":null,"abstract":"In this paper, we present a simple parallel architecture for Discrete Wavelet Transform (DWT). Efficient computation of the pyramid algorithm for the computing of the discrete wavelet transform is possible due to the similarity between computation results of each octave. By using similarity, we separated the filter into 2 parts, an even filter and an odd filter. 1 octave and other octave computation are performed in the even and odd filters at the same time. The proposed architecture has following features. (1) Critical path is 1 multiplier and 1 adder; (2) the number of required registers is 1+J*([L/sub h//2]-1)+1+J*([L/sub 1//2]-1)+J, where J is the number of octaves, L/sub h/ is length of the highpass filter and L/sub 1/ is length of the lowpass filter.","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"68 1","pages":"2100-2103 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A simple parallel architecture for discrete wavelet transform\",\"authors\":\"S. Chang, M. Lee, J. Cha\",\"doi\":\"10.1109/ISCAS.1997.621571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a simple parallel architecture for Discrete Wavelet Transform (DWT). Efficient computation of the pyramid algorithm for the computing of the discrete wavelet transform is possible due to the similarity between computation results of each octave. By using similarity, we separated the filter into 2 parts, an even filter and an odd filter. 1 octave and other octave computation are performed in the even and odd filters at the same time. The proposed architecture has following features. (1) Critical path is 1 multiplier and 1 adder; (2) the number of required registers is 1+J*([L/sub h//2]-1)+1+J*([L/sub 1//2]-1)+J, where J is the number of octaves, L/sub h/ is length of the highpass filter and L/sub 1/ is length of the lowpass filter.\",\"PeriodicalId\":68559,\"journal\":{\"name\":\"电路与系统学报\",\"volume\":\"68 1\",\"pages\":\"2100-2103 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1997.621571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.621571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种简单的离散小波变换(DWT)并行结构。由于各八度程的计算结果具有相似性,使得金字塔算法可以高效地计算离散小波变换。利用相似度,将滤波器分为偶数滤波器和奇滤波器两部分。在奇偶滤波器中同时进行1倍程和其他倍程的计算。所建议的体系结构具有以下特性。(1)关键路径为1个乘法器和1个加法器;(2)所需寄存器数为1+J*([L/sub 1//2]-1)+ 1+J*([L/sub 1//2]-1)+J,其中J为八度数,L/sub h/为高通滤波器长度,L/sub 1/为低通滤波器长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple parallel architecture for discrete wavelet transform
In this paper, we present a simple parallel architecture for Discrete Wavelet Transform (DWT). Efficient computation of the pyramid algorithm for the computing of the discrete wavelet transform is possible due to the similarity between computation results of each octave. By using similarity, we separated the filter into 2 parts, an even filter and an odd filter. 1 octave and other octave computation are performed in the even and odd filters at the same time. The proposed architecture has following features. (1) Critical path is 1 multiplier and 1 adder; (2) the number of required registers is 1+J*([L/sub h//2]-1)+1+J*([L/sub 1//2]-1)+J, where J is the number of octaves, L/sub h/ is length of the highpass filter and L/sub 1/ is length of the lowpass filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2463
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信