用pi变换和模糊直方图测量非高斯性

C. Plant, S. T. Mai, Junming Shao, Fabian J Theis, A. Meyer-Bäse, Christian Böhm
{"title":"用pi变换和模糊直方图测量非高斯性","authors":"C. Plant, S. T. Mai, Junming Shao, Fabian J Theis, A. Meyer-Bäse, Christian Böhm","doi":"10.1155/2012/962105","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) is an essential building block for data analysis in many applications. Selecting the truly meaningful components from the result of an ICA algorithm, or comparing the results of different algorithms, however, is nontrivial problems. We introduce a very general technique for evaluating ICA results rooted in information-theoretic model selection. The basic idea is to exploit the natural link between non-Gaussianity and data compression: the better the data transformation represented by one or several ICs improves the effectiveness of data compression, the higher is the relevance of the ICs. We propose two different methods which allow an efficient data compression of non-Gaussian signals: Phi-transformed histograms and fuzzy histograms. In an extensive experimental evaluation, we demonstrate that our novel information-theoretic measures robustly select non-Gaussian components from data in a fully automatic way, that is, without requiring any restrictive assumptions or thresholds.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"25 1","pages":"962105:1-962105:13"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Non-Gaussianity by Phi-Transformed and Fuzzy Histograms\",\"authors\":\"C. Plant, S. T. Mai, Junming Shao, Fabian J Theis, A. Meyer-Bäse, Christian Böhm\",\"doi\":\"10.1155/2012/962105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Independent component analysis (ICA) is an essential building block for data analysis in many applications. Selecting the truly meaningful components from the result of an ICA algorithm, or comparing the results of different algorithms, however, is nontrivial problems. We introduce a very general technique for evaluating ICA results rooted in information-theoretic model selection. The basic idea is to exploit the natural link between non-Gaussianity and data compression: the better the data transformation represented by one or several ICs improves the effectiveness of data compression, the higher is the relevance of the ICs. We propose two different methods which allow an efficient data compression of non-Gaussian signals: Phi-transformed histograms and fuzzy histograms. In an extensive experimental evaluation, we demonstrate that our novel information-theoretic measures robustly select non-Gaussian components from data in a fully automatic way, that is, without requiring any restrictive assumptions or thresholds.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"25 1\",\"pages\":\"962105:1-962105:13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/962105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/962105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多应用中,独立成分分析(ICA)是数据分析的重要组成部分。然而,从ICA算法的结果中选择真正有意义的组件,或者比较不同算法的结果,都是非常重要的问题。我们介绍了一种基于信息论模型选择的评估ICA结果的非常通用的技术。其基本思想是利用非高斯性和数据压缩之间的自然联系:由一个或几个集成电路表示的数据转换越能提高数据压缩的有效性,集成电路的相关性就越高。我们提出了两种不同的方法,可以有效地压缩非高斯信号:pi变换直方图和模糊直方图。在广泛的实验评估中,我们证明了我们的新信息论措施以全自动的方式从数据中稳健地选择非高斯分量,即不需要任何限制性假设或阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Non-Gaussianity by Phi-Transformed and Fuzzy Histograms
Independent component analysis (ICA) is an essential building block for data analysis in many applications. Selecting the truly meaningful components from the result of an ICA algorithm, or comparing the results of different algorithms, however, is nontrivial problems. We introduce a very general technique for evaluating ICA results rooted in information-theoretic model selection. The basic idea is to exploit the natural link between non-Gaussianity and data compression: the better the data transformation represented by one or several ICs improves the effectiveness of data compression, the higher is the relevance of the ICs. We propose two different methods which allow an efficient data compression of non-Gaussian signals: Phi-transformed histograms and fuzzy histograms. In an extensive experimental evaluation, we demonstrate that our novel information-theoretic measures robustly select non-Gaussian components from data in a fully automatic way, that is, without requiring any restrictive assumptions or thresholds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信