更新函数模型:模型更新方法可适用于更大范围的数据大小

Nobuhiro Sanko
{"title":"更新函数模型:模型更新方法可适用于更大范围的数据大小","authors":"Nobuhiro Sanko","doi":"10.1016/j.eastsj.2022.100071","DOIUrl":null,"url":null,"abstract":"<div><p>When data are available from two time points—older data with a larger number of observations and more recent data with a smaller number of observations—then model updating is utilised to take advantage of the different merits of each data set. However, the author's previous study demonstrated that conventional model updating methods—transfer scaling, joint context estimation, Bayesian updating, and combined transfer estimation—were inferior to models using only the more recent data. The present study examines an updating method that the author calls an ‘updating function model’ in which the parameters are assumed to follow the functions of gross domestic product per capita. The present study demonstrates that the updating function model often produces statistically significantly better forecasts than models using only the more recent data. The study extends the applicability of the model updating to cases in which the more recent time point has more observations than the older time point.</p></div>","PeriodicalId":100131,"journal":{"name":"Asian Transport Studies","volume":"8 ","pages":"Article 100071"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2185556022000177/pdfft?md5=6a7f5880c2a041152484b23baa9296d8&pid=1-s2.0-S2185556022000177-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Updating function model: Model updating method transferable in a wider range of data sizes\",\"authors\":\"Nobuhiro Sanko\",\"doi\":\"10.1016/j.eastsj.2022.100071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When data are available from two time points—older data with a larger number of observations and more recent data with a smaller number of observations—then model updating is utilised to take advantage of the different merits of each data set. However, the author's previous study demonstrated that conventional model updating methods—transfer scaling, joint context estimation, Bayesian updating, and combined transfer estimation—were inferior to models using only the more recent data. The present study examines an updating method that the author calls an ‘updating function model’ in which the parameters are assumed to follow the functions of gross domestic product per capita. The present study demonstrates that the updating function model often produces statistically significantly better forecasts than models using only the more recent data. The study extends the applicability of the model updating to cases in which the more recent time point has more observations than the older time point.</p></div>\",\"PeriodicalId\":100131,\"journal\":{\"name\":\"Asian Transport Studies\",\"volume\":\"8 \",\"pages\":\"Article 100071\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2185556022000177/pdfft?md5=6a7f5880c2a041152484b23baa9296d8&pid=1-s2.0-S2185556022000177-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Transport Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2185556022000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Transport Studies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2185556022000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当数据来自两个时间点时——具有大量观测值的较旧数据和具有较少观测值的较新数据——则利用模型更新来利用每个数据集的不同优点。然而,作者之前的研究表明,传统的模型更新方法-迁移缩放,联合上下文估计,贝叶斯更新和组合迁移估计-不如仅使用最新数据的模型。本研究考察了一种更新方法,作者称之为“更新函数模型”,其中假设参数遵循人均国内生产总值的函数。本研究表明,更新函数模型通常比仅使用较新数据的模型产生统计上显著更好的预测。该研究将模型更新的适用性扩展到最近的时间点比旧的时间点有更多观测值的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Updating function model: Model updating method transferable in a wider range of data sizes

When data are available from two time points—older data with a larger number of observations and more recent data with a smaller number of observations—then model updating is utilised to take advantage of the different merits of each data set. However, the author's previous study demonstrated that conventional model updating methods—transfer scaling, joint context estimation, Bayesian updating, and combined transfer estimation—were inferior to models using only the more recent data. The present study examines an updating method that the author calls an ‘updating function model’ in which the parameters are assumed to follow the functions of gross domestic product per capita. The present study demonstrates that the updating function model often produces statistically significantly better forecasts than models using only the more recent data. The study extends the applicability of the model updating to cases in which the more recent time point has more observations than the older time point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信