{"title":"快闪记忆体可靠性和标度投影的统计模型","authors":"D. Ielmini, A. Spinelli, A. Lacaita, A. Modelli","doi":"10.1109/IEDM.2001.979608","DOIUrl":null,"url":null,"abstract":"A new physically-based model for reliability analysis of flash memories is presented. The model provides a quantitative description of the distribution of the stress-induced leakage current (SILC) in large memory arrays, considering the statistics of the defects responsible for the trap-assisted tunneling (TAT) current. Simulation results are in good agreement with SILC statistics over oxide thicknesses of 6.5, 8.8 and 9.7 nm. The model can be used to quantitatively evaluate the failure rate under different conditions and assess the trade-off between oxide thinning and device reliability. The relationship between tunnel oxide scalability and defect concentration is also quantitatively assessed.","PeriodicalId":13825,"journal":{"name":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","volume":"8 1","pages":"32.2.1-32.2.4"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Statistical modeling of reliability and scaling projections for flash memories\",\"authors\":\"D. Ielmini, A. Spinelli, A. Lacaita, A. Modelli\",\"doi\":\"10.1109/IEDM.2001.979608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new physically-based model for reliability analysis of flash memories is presented. The model provides a quantitative description of the distribution of the stress-induced leakage current (SILC) in large memory arrays, considering the statistics of the defects responsible for the trap-assisted tunneling (TAT) current. Simulation results are in good agreement with SILC statistics over oxide thicknesses of 6.5, 8.8 and 9.7 nm. The model can be used to quantitatively evaluate the failure rate under different conditions and assess the trade-off between oxide thinning and device reliability. The relationship between tunnel oxide scalability and defect concentration is also quantitatively assessed.\",\"PeriodicalId\":13825,\"journal\":{\"name\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"volume\":\"8 1\",\"pages\":\"32.2.1-32.2.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2001.979608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2001.979608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical modeling of reliability and scaling projections for flash memories
A new physically-based model for reliability analysis of flash memories is presented. The model provides a quantitative description of the distribution of the stress-induced leakage current (SILC) in large memory arrays, considering the statistics of the defects responsible for the trap-assisted tunneling (TAT) current. Simulation results are in good agreement with SILC statistics over oxide thicknesses of 6.5, 8.8 and 9.7 nm. The model can be used to quantitatively evaluate the failure rate under different conditions and assess the trade-off between oxide thinning and device reliability. The relationship between tunnel oxide scalability and defect concentration is also quantitatively assessed.