使用StyleGAN2生成视频游戏角色

İsmail Ergen
{"title":"使用StyleGAN2生成视频游戏角色","authors":"İsmail Ergen","doi":"10.26809/joa.1974","DOIUrl":null,"url":null,"abstract":"GANs have been getting better and better each year. The state of the art GAN models for generating 2D images have become so good it is hard to differentiate generated images nowadays. In this paper we create 3 different sparse data sets from video game assets and train them with StyleGAN2 to generate new artwork based on the previously existing artworks of the video game in question","PeriodicalId":34416,"journal":{"name":"Journal of Global Awareness","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating video game characters using StyleGAN2\",\"authors\":\"İsmail Ergen\",\"doi\":\"10.26809/joa.1974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GANs have been getting better and better each year. The state of the art GAN models for generating 2D images have become so good it is hard to differentiate generated images nowadays. In this paper we create 3 different sparse data sets from video game assets and train them with StyleGAN2 to generate new artwork based on the previously existing artworks of the video game in question\",\"PeriodicalId\":34416,\"journal\":{\"name\":\"Journal of Global Awareness\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Awareness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26809/joa.1974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Awareness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26809/joa.1974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

gan一年比一年好。用于生成二维图像的GAN模型已经变得非常好,以至于现在很难区分生成的图像。在本文中,我们从电子游戏资产中创建了3个不同的稀疏数据集,并使用StyleGAN2训练它们,以基于所讨论的电子游戏先前存在的艺术作品生成新的艺术作品
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating video game characters using StyleGAN2
GANs have been getting better and better each year. The state of the art GAN models for generating 2D images have become so good it is hard to differentiate generated images nowadays. In this paper we create 3 different sparse data sets from video game assets and train them with StyleGAN2 to generate new artwork based on the previously existing artworks of the video game in question
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信