l -色氨酸自组装单层的TOF-SIMS表面分析

M. Petrovic, I. Talian, Lenka Škantárová, A. Oriňak, D. Velic
{"title":"l -色氨酸自组装单层的TOF-SIMS表面分析","authors":"M. Petrovic, I. Talian, Lenka Škantárová, A. Oriňak, D. Velic","doi":"10.2478/s11532-014-0515-5","DOIUrl":null,"url":null,"abstract":"AbstractThis paper dealt with the preparation and characterization of self — assembled monolayersSAM-s of 1-hexadecanethiole and mercapto acetic acid on the silver nanostructure and subsequently the immobilization with amino acid L-Tryptophane. In order to achieve it, we used the electrodeposition of silver onto nanostructured surface of paraffin impregnated graphite electrode (PIGE). Subsequently, we assembled SAM by choosing the 1-hexadecanethiole and mercaptoacetic acid. These two kinds of SAM underwent the functionalization by L-Tryptophan. The observations of silver on PIGE surfaces were performed by scanning electron microscope (SEM). For surface analysis of the SAM functionalized by L-tryphophan, the TOF-SIMS technique was chosen. Finally, the fragmented ions of the immobilized-L-Tryptophan SAM were determined on the basis of suggested residues and three-dimensional structure. The residues show that the ability of L-Tryptophan to build homogeneous structure is better by mercaptoacetic acid SAM structure than by 1-hexadecanethiol. It was observed that L-Tryptophan built compact surface, which, due its chemical properties, can represent very interesting side regarding biocompatibility, homochirality and robustness in the area of life science.\n","PeriodicalId":9888,"journal":{"name":"Central European Journal of Chemistry","volume":"19 1","pages":"568-576"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOF-SIMS surface analysis of L-Tryptophan self assembled monolayer\",\"authors\":\"M. Petrovic, I. Talian, Lenka Škantárová, A. Oriňak, D. Velic\",\"doi\":\"10.2478/s11532-014-0515-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThis paper dealt with the preparation and characterization of self — assembled monolayersSAM-s of 1-hexadecanethiole and mercapto acetic acid on the silver nanostructure and subsequently the immobilization with amino acid L-Tryptophane. In order to achieve it, we used the electrodeposition of silver onto nanostructured surface of paraffin impregnated graphite electrode (PIGE). Subsequently, we assembled SAM by choosing the 1-hexadecanethiole and mercaptoacetic acid. These two kinds of SAM underwent the functionalization by L-Tryptophan. The observations of silver on PIGE surfaces were performed by scanning electron microscope (SEM). For surface analysis of the SAM functionalized by L-tryphophan, the TOF-SIMS technique was chosen. Finally, the fragmented ions of the immobilized-L-Tryptophan SAM were determined on the basis of suggested residues and three-dimensional structure. The residues show that the ability of L-Tryptophan to build homogeneous structure is better by mercaptoacetic acid SAM structure than by 1-hexadecanethiol. It was observed that L-Tryptophan built compact surface, which, due its chemical properties, can represent very interesting side regarding biocompatibility, homochirality and robustness in the area of life science.\\n\",\"PeriodicalId\":9888,\"journal\":{\"name\":\"Central European Journal of Chemistry\",\"volume\":\"19 1\",\"pages\":\"568-576\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11532-014-0515-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11532-014-0515-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了银纳米结构上1-十六硫醇和巯基乙酸自组装单分子膜sam -s的制备和表征,并利用l -色氨酸进行了固定。为此,我们采用了在石蜡浸渍石墨电极(PIGE)的纳米结构表面电沉积银的方法。随后,我们通过选择1-十六烷硫醇和巯基乙酸来组装SAM。这两种SAM均被l -色氨酸功能化。用扫描电镜(SEM)观察了银在PIGE表面的分布。采用TOF-SIMS技术对l -色氨酸功能化的SAM进行表面分析。最后,根据建议残基和三维结构确定了固定化l -色氨酸SAM的碎片离子。残基分析表明,巯基乙酸对l -色氨酸形成均一结构的作用优于对1-十六烷硫醇的作用。l -色氨酸构建了致密表面,由于其化学性质,它在生物相容性、同手性和鲁棒性等方面在生命科学领域具有非常重要的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TOF-SIMS surface analysis of L-Tryptophan self assembled monolayer
AbstractThis paper dealt with the preparation and characterization of self — assembled monolayersSAM-s of 1-hexadecanethiole and mercapto acetic acid on the silver nanostructure and subsequently the immobilization with amino acid L-Tryptophane. In order to achieve it, we used the electrodeposition of silver onto nanostructured surface of paraffin impregnated graphite electrode (PIGE). Subsequently, we assembled SAM by choosing the 1-hexadecanethiole and mercaptoacetic acid. These two kinds of SAM underwent the functionalization by L-Tryptophan. The observations of silver on PIGE surfaces were performed by scanning electron microscope (SEM). For surface analysis of the SAM functionalized by L-tryphophan, the TOF-SIMS technique was chosen. Finally, the fragmented ions of the immobilized-L-Tryptophan SAM were determined on the basis of suggested residues and three-dimensional structure. The residues show that the ability of L-Tryptophan to build homogeneous structure is better by mercaptoacetic acid SAM structure than by 1-hexadecanethiol. It was observed that L-Tryptophan built compact surface, which, due its chemical properties, can represent very interesting side regarding biocompatibility, homochirality and robustness in the area of life science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信