{"title":"硅纳米晶体中的载流子倍增:理论方法和钝化的作用","authors":"I. Marri, M. Govoni, S. Ossicini","doi":"10.1002/pssc.201700198","DOIUrl":null,"url":null,"abstract":"Carrier multiplication is a non-radiative recombination mechanism that leads to the generation of two or more electron-hole pairs after absorption of a single photon. By reducing the occurrence of dissipative effects, this process can be exploited to increase solar cell performance. In this work we introduce two different theoretical fully ab-initio tools that can be adopted to study carrier multiplication in nanocrystals. The tools are described in detail and compared. Subsequently we calculate carrier multiplication lifetimes in H- and OH- terminated silicon nanocrystals, pointed out the role played by the passivation on the carrier multiplication processes.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"16 1","pages":"1700198-1700198"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Carrier Multiplication in Silicon Nanocrystals:Theoretical Methodologies and Role of the Passivation\",\"authors\":\"I. Marri, M. Govoni, S. Ossicini\",\"doi\":\"10.1002/pssc.201700198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carrier multiplication is a non-radiative recombination mechanism that leads to the generation of two or more electron-hole pairs after absorption of a single photon. By reducing the occurrence of dissipative effects, this process can be exploited to increase solar cell performance. In this work we introduce two different theoretical fully ab-initio tools that can be adopted to study carrier multiplication in nanocrystals. The tools are described in detail and compared. Subsequently we calculate carrier multiplication lifetimes in H- and OH- terminated silicon nanocrystals, pointed out the role played by the passivation on the carrier multiplication processes.\",\"PeriodicalId\":20065,\"journal\":{\"name\":\"Physica Status Solidi (c)\",\"volume\":\"16 1\",\"pages\":\"1700198-1700198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi (c)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssc.201700198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssc.201700198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carrier Multiplication in Silicon Nanocrystals:Theoretical Methodologies and Role of the Passivation
Carrier multiplication is a non-radiative recombination mechanism that leads to the generation of two or more electron-hole pairs after absorption of a single photon. By reducing the occurrence of dissipative effects, this process can be exploited to increase solar cell performance. In this work we introduce two different theoretical fully ab-initio tools that can be adopted to study carrier multiplication in nanocrystals. The tools are described in detail and compared. Subsequently we calculate carrier multiplication lifetimes in H- and OH- terminated silicon nanocrystals, pointed out the role played by the passivation on the carrier multiplication processes.