包含神经估计器和神经控制器的改进自适应离散控制系统

S. Khanmohammadi, I. Hassanzadeh, M.B.B. Sharifian
{"title":"包含神经估计器和神经控制器的改进自适应离散控制系统","authors":"S. Khanmohammadi,&nbsp;I. Hassanzadeh,&nbsp;M.B.B. Sharifian","doi":"10.1016/S0954-1810(99)00017-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper a modified discrete adaptive control system with neural estimator and neural controller is presented. The structure of the adaptive controller is based on the model presented by Etxebarria (Etxebarria V. Adaptive control of discrete systems using neural networks. IEE Proc. Control Theory Application, Vol. 141, No. 4, July, 1995) where the stability of the control procedure is proved. The Widrow–Hoff procedure of learning and the DARMA model is used for identifying and adjustment of neural network parameters, applied to adaptive control of discrete systems. In this paper the procedure of Etxebarria is modified. The learning rate of the neural network is improved and accelerated using the PD, PI and PID input controllers for input neurons. The effect of adding a momentum term (the past record of the learning) to the learning rule of the neural network is studied. The results are compared and discussed using the examples of Etxebarria and two other case studies. The procedure is extended to multi-input multi-output systems and cases studied are simulated.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00017-5","citationCount":"17","resultStr":"{\"title\":\"Modified adaptive discrete control system containing neural estimator and neural controller\",\"authors\":\"S. Khanmohammadi,&nbsp;I. Hassanzadeh,&nbsp;M.B.B. Sharifian\",\"doi\":\"10.1016/S0954-1810(99)00017-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper a modified discrete adaptive control system with neural estimator and neural controller is presented. The structure of the adaptive controller is based on the model presented by Etxebarria (Etxebarria V. Adaptive control of discrete systems using neural networks. IEE Proc. Control Theory Application, Vol. 141, No. 4, July, 1995) where the stability of the control procedure is proved. The Widrow–Hoff procedure of learning and the DARMA model is used for identifying and adjustment of neural network parameters, applied to adaptive control of discrete systems. In this paper the procedure of Etxebarria is modified. The learning rate of the neural network is improved and accelerated using the PD, PI and PID input controllers for input neurons. The effect of adding a momentum term (the past record of the learning) to the learning rule of the neural network is studied. The results are compared and discussed using the examples of Etxebarria and two other case studies. The procedure is extended to multi-input multi-output systems and cases studied are simulated.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00017-5\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181099000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181099000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种基于神经估计器和神经控制器的改进离散自适应控制系统。自适应控制器的结构是基于Etxebarria (Etxebarria V.)提出的模型。控制理论应用,Vol. 141, No. 4, July, 1995),其中证明了控制过程的稳定性。采用Widrow-Hoff学习过程和DARMA模型对神经网络参数进行辨识和调整,并将其应用于离散系统的自适应控制。本文对Etxebarria的程序进行了改进。采用PD、PI和PID作为输入神经元的输入控制器,提高和加快了神经网络的学习率。研究了在神经网络的学习规则中加入动量项(学习的过去记录)的效果。用Etxebarria的例子和另外两个案例对结果进行了比较和讨论。将该方法推广到多输入多输出系统,并对所研究的实例进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified adaptive discrete control system containing neural estimator and neural controller

In this paper a modified discrete adaptive control system with neural estimator and neural controller is presented. The structure of the adaptive controller is based on the model presented by Etxebarria (Etxebarria V. Adaptive control of discrete systems using neural networks. IEE Proc. Control Theory Application, Vol. 141, No. 4, July, 1995) where the stability of the control procedure is proved. The Widrow–Hoff procedure of learning and the DARMA model is used for identifying and adjustment of neural network parameters, applied to adaptive control of discrete systems. In this paper the procedure of Etxebarria is modified. The learning rate of the neural network is improved and accelerated using the PD, PI and PID input controllers for input neurons. The effect of adding a momentum term (the past record of the learning) to the learning rule of the neural network is studied. The results are compared and discussed using the examples of Etxebarria and two other case studies. The procedure is extended to multi-input multi-output systems and cases studied are simulated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信