{"title":"为火星硫磺混凝土获取单质硫","authors":"A. Barkatt, M. Okutsu","doi":"10.1177/17475198221080729","DOIUrl":null,"url":null,"abstract":"A potential candidate material for the construction of Mars habitats is concrete made from the Martian regolith and sulfur extracted from the regolith itself. Sulfur concrete, which has excellent mechanical properties, can be prepared at a low temperature (<150 °) and without water (unlike Portland-cement concrete). The surface of Mars has a much higher concentration of sulfur than those of the Earth, the Moon, or the asteroids. Sulfur on Mars, however, exists not as elemental sulfur—which is needed in concrete production—but as sulfates (usually hydrated) and sulfides. This paper surveys thermochemical and electrochemical methods that might be used to produce elemental sulfur from its compounds contained in the minerals on Mars. Possible methods include chemical or electrochemical oxidation or decomposition of sulfides, which include sulfides that exist naturally on Mars as well as sulfides that are produced via chemical or electrochemical reduction of sulfates. Some of the methods to obtain elemental sulfur—such as chemical or electrochemical oxidation or decomposition of metal sulfides or hydrogen sulfide—have already been demonstrated. The methods of producing elemental sulfur from sulfur-containing minerals on Mars will have the added benefit of generating byproducts (e.g. water, hydrogen, oxygen, and metals) that are useful for explorations of the Red Planet. In the future, chemical processes for the production of elemental sulfur may also have important industrial applications on Earth.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Obtaining elemental sulfur for Martian sulfur concrete\",\"authors\":\"A. Barkatt, M. Okutsu\",\"doi\":\"10.1177/17475198221080729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A potential candidate material for the construction of Mars habitats is concrete made from the Martian regolith and sulfur extracted from the regolith itself. Sulfur concrete, which has excellent mechanical properties, can be prepared at a low temperature (<150 °) and without water (unlike Portland-cement concrete). The surface of Mars has a much higher concentration of sulfur than those of the Earth, the Moon, or the asteroids. Sulfur on Mars, however, exists not as elemental sulfur—which is needed in concrete production—but as sulfates (usually hydrated) and sulfides. This paper surveys thermochemical and electrochemical methods that might be used to produce elemental sulfur from its compounds contained in the minerals on Mars. Possible methods include chemical or electrochemical oxidation or decomposition of sulfides, which include sulfides that exist naturally on Mars as well as sulfides that are produced via chemical or electrochemical reduction of sulfates. Some of the methods to obtain elemental sulfur—such as chemical or electrochemical oxidation or decomposition of metal sulfides or hydrogen sulfide—have already been demonstrated. The methods of producing elemental sulfur from sulfur-containing minerals on Mars will have the added benefit of generating byproducts (e.g. water, hydrogen, oxygen, and metals) that are useful for explorations of the Red Planet. In the future, chemical processes for the production of elemental sulfur may also have important industrial applications on Earth.\",\"PeriodicalId\":15318,\"journal\":{\"name\":\"Journal of Chemical Research-s\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Research-s\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/17475198221080729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221080729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Obtaining elemental sulfur for Martian sulfur concrete
A potential candidate material for the construction of Mars habitats is concrete made from the Martian regolith and sulfur extracted from the regolith itself. Sulfur concrete, which has excellent mechanical properties, can be prepared at a low temperature (<150 °) and without water (unlike Portland-cement concrete). The surface of Mars has a much higher concentration of sulfur than those of the Earth, the Moon, or the asteroids. Sulfur on Mars, however, exists not as elemental sulfur—which is needed in concrete production—but as sulfates (usually hydrated) and sulfides. This paper surveys thermochemical and electrochemical methods that might be used to produce elemental sulfur from its compounds contained in the minerals on Mars. Possible methods include chemical or electrochemical oxidation or decomposition of sulfides, which include sulfides that exist naturally on Mars as well as sulfides that are produced via chemical or electrochemical reduction of sulfates. Some of the methods to obtain elemental sulfur—such as chemical or electrochemical oxidation or decomposition of metal sulfides or hydrogen sulfide—have already been demonstrated. The methods of producing elemental sulfur from sulfur-containing minerals on Mars will have the added benefit of generating byproducts (e.g. water, hydrogen, oxygen, and metals) that are useful for explorations of the Red Planet. In the future, chemical processes for the production of elemental sulfur may also have important industrial applications on Earth.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.