深度学习AI云服务模式的体系构建

Pub Date : 2023-08-08 DOI:10.3233/idt-230150
Chunhua Lin
{"title":"深度学习AI云服务模式的体系构建","authors":"Chunhua Lin","doi":"10.3233/idt-230150","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) is the basis of many applications of artificial intelligence (AI), and cloud service is the main way of modern computer capabilities. DL functions provided by cloud services have attracted great attention. At present, the application of AI in various fields of life is gradually playing an important role, and the demand and enthusiasm of governments at all levels for building AI computing capacity are also growing. The AI logic evaluation process is often based on complex algorithms that use or generate large amounts of data. Due to the higher requirements for the data processing and storage capacity of the device itself, which are often not fully realized by humans because the current data processing technology and information storage technology are relatively backward, this has become an obstacle to the further development of AI cloud services. Therefore, this paper has studied the requirements and objectives of the cloud service system under AI by analyzing the operation characteristics, service mode and current situation of DL, constructed design principles according to its requirements, and finally designed and implemented a cloud service system, thereby improving the algorithm scheduling quality of the cloud service system. The data processing capacity, resource allocation capacity and security management capacity of the AI cloud service system were superior to the original cloud service system. Among them, the data processing capacity of AI cloud service system was 7.3% higher than the original cloud service system; the resource allocation capacity of AI cloud service system was 6.7% higher than the original cloud service system; the security management capacity of AI cloud service system was 8.9% higher than the original cloud service system. In conclusion, DL plays an important role in the construction of AI cloud service system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System construction of deep learning AI cloud service mode\",\"authors\":\"Chunhua Lin\",\"doi\":\"10.3233/idt-230150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) is the basis of many applications of artificial intelligence (AI), and cloud service is the main way of modern computer capabilities. DL functions provided by cloud services have attracted great attention. At present, the application of AI in various fields of life is gradually playing an important role, and the demand and enthusiasm of governments at all levels for building AI computing capacity are also growing. The AI logic evaluation process is often based on complex algorithms that use or generate large amounts of data. Due to the higher requirements for the data processing and storage capacity of the device itself, which are often not fully realized by humans because the current data processing technology and information storage technology are relatively backward, this has become an obstacle to the further development of AI cloud services. Therefore, this paper has studied the requirements and objectives of the cloud service system under AI by analyzing the operation characteristics, service mode and current situation of DL, constructed design principles according to its requirements, and finally designed and implemented a cloud service system, thereby improving the algorithm scheduling quality of the cloud service system. The data processing capacity, resource allocation capacity and security management capacity of the AI cloud service system were superior to the original cloud service system. Among them, the data processing capacity of AI cloud service system was 7.3% higher than the original cloud service system; the resource allocation capacity of AI cloud service system was 6.7% higher than the original cloud service system; the security management capacity of AI cloud service system was 8.9% higher than the original cloud service system. In conclusion, DL plays an important role in the construction of AI cloud service system.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/idt-230150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/idt-230150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)是人工智能(AI)许多应用的基础,云服务是现代计算机能力的主要方式。云服务提供的深度学习功能引起了人们的极大关注。目前,AI在生活各个领域的应用正在逐渐发挥重要作用,各级政府对AI计算能力建设的需求和热情也在不断增长。人工智能逻辑评估过程通常基于使用或生成大量数据的复杂算法。由于目前的数据处理技术和信息存储技术相对落后,对设备本身的数据处理和存储能力提出了更高的要求,而人类往往无法完全实现这些要求,这已经成为AI云服务进一步发展的障碍。因此,本文通过分析DL的运行特点、服务模式和现状,研究了AI下云服务系统的需求和目标,并根据其需求构建了设计原则,最终设计实现了云服务系统,从而提高了云服务系统的算法调度质量。人工智能云服务系统的数据处理能力、资源分配能力和安全管理能力均优于原有云服务系统。其中,AI云服务系统的数据处理能力比原有云服务系统提升7.3%;人工智能云服务系统资源配置能力较原有云服务系统提升6.7%;AI云服务系统安全管理能力比原云服务系统提升8.9%。综上所述,深度学习在构建人工智能云服务体系中发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
System construction of deep learning AI cloud service mode
Deep learning (DL) is the basis of many applications of artificial intelligence (AI), and cloud service is the main way of modern computer capabilities. DL functions provided by cloud services have attracted great attention. At present, the application of AI in various fields of life is gradually playing an important role, and the demand and enthusiasm of governments at all levels for building AI computing capacity are also growing. The AI logic evaluation process is often based on complex algorithms that use or generate large amounts of data. Due to the higher requirements for the data processing and storage capacity of the device itself, which are often not fully realized by humans because the current data processing technology and information storage technology are relatively backward, this has become an obstacle to the further development of AI cloud services. Therefore, this paper has studied the requirements and objectives of the cloud service system under AI by analyzing the operation characteristics, service mode and current situation of DL, constructed design principles according to its requirements, and finally designed and implemented a cloud service system, thereby improving the algorithm scheduling quality of the cloud service system. The data processing capacity, resource allocation capacity and security management capacity of the AI cloud service system were superior to the original cloud service system. Among them, the data processing capacity of AI cloud service system was 7.3% higher than the original cloud service system; the resource allocation capacity of AI cloud service system was 6.7% higher than the original cloud service system; the security management capacity of AI cloud service system was 8.9% higher than the original cloud service system. In conclusion, DL plays an important role in the construction of AI cloud service system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信