逆散射无rip压缩感知的理论推导

P. Shah, M. Moghaddam
{"title":"逆散射无rip压缩感知的理论推导","authors":"P. Shah, M. Moghaddam","doi":"10.1109/APS.2016.7696219","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) is a powerful sampling and reconstruction approach, if the unknown signal is sparse and the system matrix follows certain properties. It has been recently applied to inverse scattering problems numerous times without validating the properties of the system matrix. In this article, we seek to validate the applicability of CS to the inverse scattering problem. We formulate the problem such that the system matrix remains simple and universally applicable by using only a homogeneous background medium and then applying the CS constraints. Our analysis shows that the constraints can be satisfied under various scenarios. We then show the results of application of two such possible constraints.","PeriodicalId":6496,"journal":{"name":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"10 1","pages":"1023-1024"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical derivation of RIP-less compressive sensing for inverse scattering\",\"authors\":\"P. Shah, M. Moghaddam\",\"doi\":\"10.1109/APS.2016.7696219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing (CS) is a powerful sampling and reconstruction approach, if the unknown signal is sparse and the system matrix follows certain properties. It has been recently applied to inverse scattering problems numerous times without validating the properties of the system matrix. In this article, we seek to validate the applicability of CS to the inverse scattering problem. We formulate the problem such that the system matrix remains simple and universally applicable by using only a homogeneous background medium and then applying the CS constraints. Our analysis shows that the constraints can be satisfied under various scenarios. We then show the results of application of two such possible constraints.\",\"PeriodicalId\":6496,\"journal\":{\"name\":\"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)\",\"volume\":\"10 1\",\"pages\":\"1023-1024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2016.7696219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2016.7696219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压缩感知(CS)是一种强大的采样和重构方法,如果未知信号是稀疏的,并且系统矩阵遵循一定的性质。它最近被应用于反散射问题,但没有验证系统矩阵的性质。在本文中,我们试图验证CS在逆散射问题中的适用性。我们通过只使用齐次背景介质,然后应用CS约束,使系统矩阵保持简单和普遍适用。我们的分析表明,在各种情况下都可以满足约束。然后,我们展示了应用这两个可能的约束的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical derivation of RIP-less compressive sensing for inverse scattering
Compressive sensing (CS) is a powerful sampling and reconstruction approach, if the unknown signal is sparse and the system matrix follows certain properties. It has been recently applied to inverse scattering problems numerous times without validating the properties of the system matrix. In this article, we seek to validate the applicability of CS to the inverse scattering problem. We formulate the problem such that the system matrix remains simple and universally applicable by using only a homogeneous background medium and then applying the CS constraints. Our analysis shows that the constraints can be satisfied under various scenarios. We then show the results of application of two such possible constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信