脉冲硅神经网络的片上学习

T. Lehmann, R. Woodburn, A. Murray
{"title":"脉冲硅神经网络的片上学习","authors":"T. Lehmann, R. Woodburn, A. Murray","doi":"10.1109/ISCAS.1997.608954","DOIUrl":null,"url":null,"abstract":"Self-learning chips to implement conventional ANN (artificial neural network) algorithms are very difficult to design and unconvincing in their results. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer an alternative, 'biologically-inspired' approach, explaining what we mean by this term and providing an example of a robust, self-learning design which can solve simple classical-conditioning tasks.","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"9 1","pages":"693-696 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On-chip learning in pulsed silicon neural networks\",\"authors\":\"T. Lehmann, R. Woodburn, A. Murray\",\"doi\":\"10.1109/ISCAS.1997.608954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-learning chips to implement conventional ANN (artificial neural network) algorithms are very difficult to design and unconvincing in their results. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer an alternative, 'biologically-inspired' approach, explaining what we mean by this term and providing an example of a robust, self-learning design which can solve simple classical-conditioning tasks.\",\"PeriodicalId\":68559,\"journal\":{\"name\":\"电路与系统学报\",\"volume\":\"9 1\",\"pages\":\"693-696 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1997.608954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.608954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

实现传统人工神经网络算法的自学习芯片设计非常困难,其结果难以令人信服。我们解释了为什么会这样,并说明了以前的工作在设计自学系统方面教给我们的经验教训。我们提供了另一种“受生物学启发”的方法,解释了这个术语的含义,并提供了一个健壮的、自我学习的设计示例,它可以解决简单的经典条件反射任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-chip learning in pulsed silicon neural networks
Self-learning chips to implement conventional ANN (artificial neural network) algorithms are very difficult to design and unconvincing in their results. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer an alternative, 'biologically-inspired' approach, explaining what we mean by this term and providing an example of a robust, self-learning design which can solve simple classical-conditioning tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2463
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信