有限Gabor展开的时频分裂Zak变换

S. Pei, M. Yeh
{"title":"有限Gabor展开的时频分裂Zak变换","authors":"S. Pei, M. Yeh","doi":"10.1109/ISCAS.1995.523783","DOIUrl":null,"url":null,"abstract":"The relationship between the finite discrete Zak transform and the finite Gabor expansion are discussed in this paper. We present two DFT-based algorithms for computing Gabor coefficients. One is based upon the time-split Zak transform, the other upon the frequency-split Zak transform. These two methods are time and frequency dual pairs. Furthermore, we extend the relationship between the finite discrete Zak transform and the Gabor expansion to the 2-D case and compute 2-D Gabor expansion coefficients through the 2-D discrete Zak transform and 4-D DFT. Four methods can be applied in the 2-D case. They are time-time-split, time-frequency-split, frequency-time-split and frequency-frequency-split.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"26 1","pages":"1876-1879"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Time Frequency Split Zak Transform for Finite Gabor Expansion\",\"authors\":\"S. Pei, M. Yeh\",\"doi\":\"10.1109/ISCAS.1995.523783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between the finite discrete Zak transform and the finite Gabor expansion are discussed in this paper. We present two DFT-based algorithms for computing Gabor coefficients. One is based upon the time-split Zak transform, the other upon the frequency-split Zak transform. These two methods are time and frequency dual pairs. Furthermore, we extend the relationship between the finite discrete Zak transform and the Gabor expansion to the 2-D case and compute 2-D Gabor expansion coefficients through the 2-D discrete Zak transform and 4-D DFT. Four methods can be applied in the 2-D case. They are time-time-split, time-frequency-split, frequency-time-split and frequency-frequency-split.\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"26 1\",\"pages\":\"1876-1879\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1995.523783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.1995.523783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文讨论了有限离散Zak变换与有限Gabor展开之间的关系。我们提出了两种基于dft的计算Gabor系数的算法。一种是基于时分Zak变换,另一种是基于频分Zak变换。这两种方法是时间和频率对偶。进一步将有限离散Zak变换与Gabor展开之间的关系推广到二维情况,并通过二维离散Zak变换和四维DFT计算二维Gabor展开系数。在二维情况下,有四种方法可以应用。它们是时-时-分,时-频-分,频-时-分和频-频-分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Frequency Split Zak Transform for Finite Gabor Expansion
The relationship between the finite discrete Zak transform and the finite Gabor expansion are discussed in this paper. We present two DFT-based algorithms for computing Gabor coefficients. One is based upon the time-split Zak transform, the other upon the frequency-split Zak transform. These two methods are time and frequency dual pairs. Furthermore, we extend the relationship between the finite discrete Zak transform and the Gabor expansion to the 2-D case and compute 2-D Gabor expansion coefficients through the 2-D discrete Zak transform and 4-D DFT. Four methods can be applied in the 2-D case. They are time-time-split, time-frequency-split, frequency-time-split and frequency-frequency-split.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信